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Multiple Regression

Multiple Regression - Regression with 2 or more predictor variables

Example: Roofing Shingle Sales in n = 26 sales districts

y = Annual Sales (in 1000 squares)

x1 = Promotional expenditures (in $1000)

x2 = Number of active accounts

x3 = Number of competing brands

x4 = District Potential

2 Questions of interest

1. Which of the four factors (if any) affect shingle sales?

2. Does promotion affect sales, after accounting for the other three factors?
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Roofing Shingle Sales Data
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. correlate (obs=26)

| sales promot~n accounts brands potent~l
-------------+---------------------------------------------

sales | 1.0000
promotion | 0.1589 1.0000
accounts | 0.7828 0.1726 1.0000
brands | -0.8330 -0.0383 -0.3243 1.0000

potential | 0.4073 -0.0706 0.4682 -0.2021 1.0000

Suggestions from plot and correlation matrix

• Sales increase with number of accounts

• Sales decrease with number of competing brands

• Sales increase with potential

• Correlation among predictors (accounts and promotion, accounts and
potiential, etc)
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Multiple Linear Regression Model for the Mean Response

µy = β0 + β1x1 + β2x2 + . . . + βpxp

In the example p = 4.

Each combination of predictor variables has its own mean level.

Data

Obs 1: (x11, x12, . . . , x1p, y1)

Obs 2: (x21, x22, . . . , x2p, y2)

•
•
•

Obs n: (xn1, xn2, . . . , xnp, yn)
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Multiple Regression Model

yi = β0 + β1xi1 + β2xi2 + . . . + βpxip + εi

where
εi ∼ N(0, σ)

Note that no assumption about the distribution of the predictor variables is
begin made here.

The model for the y’s is conditional on the x’s.

How to think about the βj’s

βj gives the expected change in the response y when xj increases by 1 unit,
given the other predictor variables are help fixed.

Section 11.1 - Inference for Multiple Regression 5



For example, suppose that the population mean model for the shingle data
is

µy = 180 + 2.1Proportion + 3.3Accounts− 21Brands + 0.35Potential

each additional account is worth 3.3 (× 1000) additional squares of sales
on average, assuming that promotional spending, the number of competing
brands and sales potential is kept the same.

Another way of thinking of βj is suppose that you have 2 observation with
all the x’s the same, except that xj for observation 1 is 1 unit higher than
xj for observation 2. Then the expected difference in y1 − y2 is βj.
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Estimation:

• Parameters to be estimated: β0, β1, . . . , βp, σ

• Estimation method: Least squares

Based of the residuals

ei = yi − ŷi

= yi − b0 − b1xi1 − b2xi2 − . . .− bpxip

Find b0, b1, . . . , bp which minimize

∑
(yi − b0 − b1xi1 − b2xi2 − . . .− bpxip)2

There are not nice formulas for b0, b1, . . . , bp, unless you do things using
matrix algebra. (If you are interested, see a regression text like Neter,
Kutner, Nachtsheim, & Wasserman or Montgomery and Peck).
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• Estimating σ

s2 =
∑

e2
i

n− p− 1

=
∑

(yi − b0 − b1xi1 − b2xi2 − . . .− bpxip)2

n− p− 1

s =
√

s2

Degrees of freedom = n− p− 1

Note that the degrees of freedom match with the simple linear regression
case (p = 1), which gives n− 2.
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. regress sales promotion accounts brands potential
Source | SS df MS Number of obs = 26

----------+------------------------------ F( 4, 21) = 479.10
Model | 176777.061 4 44194.2653 Prob > F = 0.0000

Residual | 1937.13655 21 92.2445975 R-squared = 0.9892
----------+------------------------------ Adj R-squared = 0.9871

Total | 178714.198 25 7148.5679 Root MSE = 9.6044
---------------------------------------------------------------------------

sales | Coef. Std. Err. t P>|t| [95% Conf. Interval]
----------+----------------------------------------------------------------
promotion | 1.807064 1.081039 1.67 0.109 -.4410806 4.055208
accounts | 3.317833 .1628917 20.37 0.000 2.979082 3.656585
brands | -21.18498 .7879389 -26.89 0.000 -22.82359 -19.54638

potential | .3245121 .4677644 0.69 0.495 -.6482572 1.297281
_cons | 178.3203 12.96032 13.76 0.000 151.3679 205.2728

---------------------------------------------------------------------------

µ̂y = 178.32 + 1.81Proportion + 3.32Accounts

−21.18Brands + 0.32Potential

Section 11.1 - Inference for Multiple Regression 9



Inference on Individual βs

The confidence intervals for the individual βs are similar to the simple linear
regression case.

The confidence interval for βj is

bj ± t∗SEbj

where t∗ is based on n− p− 1 degrees of freedom.

Note that the degrees of freedom is given in the Residual (or error) line of
the ANOVA table.
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For example, a 95% CI for the effect of each additional account in a region
is given by

CI = 3.318± 2.080× 0.1629

= 3.318± 0.339

= (2.979, 3.657)

---------------------------------------------------------------------------
sales | Coef. Std. Err. t P>|t| [95% Conf. Interval]

----------+----------------------------------------------------------------
promotion | 1.807064 1.081039 1.67 0.109 -.4410806 4.055208
accounts | 3.317833 .1628917 20.37 0.000 2.979082 3.656585
brands | -21.18498 .7879389 -26.89 0.000 -22.82359 -19.54638

potential | .3245121 .4677644 0.69 0.495 -.6482572 1.297281
_cons | 178.3203 12.96032 13.76 0.000 151.3679 205.2728

---------------------------------------------------------------------------
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Tests examining H0 : βj = 0

Interested in only a single β. Assume that the others can take any arbitrary
value.

Want to compare two models:

• Full model:

yi = β0 + β1xi1 + β2xi2 + . . . + βpxi,p−1 + βpxip + εi

• Reduced model (for example H0 : βp = 0):

yi = β0 + β1xi1 + β2xi2 + . . . + βpxi,p−1 + εi

(Similarly for H0 : βj = 0)

Investigates the question, is the full model a better description of the data
than the reduced model.
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Another way of thinking of this setup, does variable j add anything
significant to the prediction after using the other p− 1 variables.

In the simple regression case, the two models compared are

• Full model (HA : β1 6= 0):

yi = β0 + β1xi1 + εi

• Reduced model (H0 : β1 = 0):

yi = β0 + εi

To test H0 : βj = 0, a t test can be used

Test statistic:

t =
bj

SEbj
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P -values:

HA : β1 < 0 p−value = P [T ≤ tobs]

HA : β1 > 0 p−value = P [T ≥ tobs]

HA : β1 6= 0 p−value = 2× P [T ≥ |tobs|]

where T has a t(n− p− 1) distribution.

---------------------------------------------------------------------------
sales | Coef. Std. Err. t P>|t| [95% Conf. Interval]

----------+----------------------------------------------------------------
promotion | 1.807064 1.081039 1.67 0.109 -.4410806 4.055208
accounts | 3.317833 .1628917 20.37 0.000 2.979082 3.656585
brands | -21.18498 .7879389 -26.89 0.000 -22.82359 -19.54638

potential | .3245121 .4677644 0.69 0.495 -.6482572 1.297281
_cons | 178.3203 12.96032 13.76 0.000 151.3679 205.2728

---------------------------------------------------------------------------
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For promotion it appears, that after accounting for the effects of the number
of accounts, the number of brands, and the potential for the region, the
amount spent on promotion doesn’t significantly affect the sale of shingles.
Though note that the sample size is small and the CI for βpromo is wide.

Section 11.1 - Inference for Multiple Regression 15



Tests investigating all βs

A second set of hypotheses of interest is

H0 : β1 = β2 = . . . = βp = 0 vs HA : at least one of the βj 6= 0

The null hypothesis states that none of the predictor variables is useful in
describing the response variable.

The alternative hypothesis states that at least one of the predictors is useful
(but doesn’t specify which of them are).

In the framework of comparing two models, these hypotheses correspond to
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• Full model (HA):

yi = β0 + β1xi1 + β2xi2 + . . . + βpxip + εi

• Reduced model (H0 : β1 = β2 = . . . = βp = 0):

yi = β0 + εi

These two hypotheses can be examined with an ANOVA style analysis

ANOVA Table

Source DF SS MS F

Model p SSM =
∑

(ŷi − ȳ)2 MSM = SSM
DFM F = MSM

MSE

Error n− p− 1 SSE =
∑

(yi − ŷi)2 MSE = SSE
DFE

Total n− 1 SST =
∑

(yi − ȳ)2
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The F statistic should be compared to an F (p, n− p− 1) distribution.

As in simple linear regression, the following relationships hold

SST = SSM + SSE

DFT = DFM + DFE
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Source | SS df MS Number of obs = 26
----------+------------------------------ F( 4, 21) = 479.10

Model | 176777.061 4 44194.2653 Prob > F = 0.0000
Residual | 1937.13655 21 92.2445975 R-squared = 0.9892

----------+------------------------------ Adj R-squared = 0.9871
Total | 178714.198 25 7148.5679 Root MSE = 9.6044

---------------------------------------------------------------------------
sales | Coef. Std. Err. t P>|t| [95% Conf. Interval]

----------+----------------------------------------------------------------
promotion | 1.807064 1.081039 1.67 0.109 -.4410806 4.055208
accounts | 3.317833 .1628917 20.37 0.000 2.979082 3.656585
brands | -21.18498 .7879389 -26.89 0.000 -22.82359 -19.54638

potential | .3245121 .4677644 0.69 0.495 -.6482572 1.297281
_cons | 178.3203 12.96032 13.76 0.000 151.3679 205.2728

---------------------------------------------------------------------------

Note that this F test doesn’t tell you which variables are statistically
significant, just whether some of them are or not.

To figure out which of the variables are most likely to be the important
ones, you need to do further analysis.

Section 11.1 - Inference for Multiple Regression 19



The Total line in the ANOVA table describes the fit for the Reduced (H0)
model.

The Error line describes the fit for the Full (HA) model.

The Model line describes the improvement in the fit of the Full model over
the Reduced model.

F tables (Table E in book)

Give critical values for F (df1, df2) distributions

Columns correspond to df1 which is Model degrees of freedom

Rows correspond to df2 which is the Error degrees of freedom
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So for the Shingle example, if we want to do a 1% test on whether any of
the predictors are useful, F ∗ = 4.37 (df = 4, 21). Since F = 479.10 > 4.37
we want to reject H0 and conclude that some of the predictors are useful.
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We can also use the table to bound p-values. Suppose we did an F test
and got Fobs = 3.78 and df = 5,18. Then

0.01 < p−value < 0.025

as 3.38 < Fobs < 4.25 (the 0.025 and 0.01 critical values).

You do not need to double p-value with the F table.
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Squared Multiple Correlation R2

R2 =
SSM

SST
=

∑
(ŷi − ȳ)2∑
(yi − ȳ)2

As in the simple linear regression case, it gives the proportion of the
variability in the response variable described by the set of explanatory
variables x1, x2, . . . , xp.

In the example, R2 = 0.9892.

These 4 variables do a very good job of explaining the variability in the
shingle sales.

As with simple linear regression, R =
√

R2 is a correlation.

In this case it the correlation between yi and ŷi.
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Confidence Intervals for a Mean Response

Interested in the mean response of y when x1 = x∗1, x2 = x∗2, . . . , xp = x∗p

µy = β0 + β1x
∗
1 + β2x

∗
2 + . . . + βpx

∗
p

Estimate this with

µ̂y = b0 + b1x
∗
1 + b2x

∗
2 + . . . + bpx

∗
p

The confidence interval for µy is

µ̂y ± t∗SEµ̂y

where t∗ is based on a t(n− p− 1) distribution.
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The standard error of µ̂y depends on a number of factors

• x∗

Its smallest when x∗1 = x̄1, x
∗
2 = x̄2, . . . , x

∗
p = x̄p, and increases as the

location of interest moves away from the point of means.

• s

It proportion to s, the standard deviation of the residuals.

• Correlation of the xs.
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Prediction Intervals for a Future Observation

Interested in a new observation of y when x1 = x∗1, x2 = x∗2, . . . , xp = x∗p

y = β0 + β1x
∗
1 + β2x

∗
2 + . . . + βpx

∗
p + ε

Estimate this with

ŷ = b0 + b1x
∗
1 + b2x

∗
2 + . . . + bpx

∗
p

The confidence interval for µy is

ŷ ± t∗SEŷ

where t∗ is based on a t(n− p− 1) distribution.
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The standard error of prediction of ŷ is

SEŷ =
√

s2 + SE2
µ̂y

SEŷ again accounts for two piece of uncertainty.

• Uncertainty about the regression surface at x∗.

• Deviations of observations from the true regression surface

Notice that SEŷ ≥ SEµ̂y and SEŷ ≥ s

The statements about the magnitude of SEµ̂y also hold for SEŷ.
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