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Residual Plots

Underlying the regression line description is the “model”

Data = Fit + Error

where the fit is given by a straight line. It is useful to examine whether this
model is a reasonable description of the data.

This is usually done by examining the residuals from the regression

residual = observed y − predicted y

e = y − ŷ
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Facts about residuals

• When using the least squares line ē = 0 (average residual = 0). So the
regression line doesn’t tend to over or under predict.

• rx,e = 0. The correlation between the x’s and the residuals is 0. This
implies that the regression line gets all the information about the linear
pattern in the data.

Sometimes problems can be obvious from the scatterplot of the data, but
often problems can be detected more readily by examining the residuals.

A common way of doing this examination is by a residual plot.
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Residual Plot

A scatterplot of the residuals versus the x’s (or the fitted values, ŷ).
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What do you want to see in a residual plot?

• Nothing

• No obvious pattern

• No points standing out

What do you not want to see in a residual plot?

• Curved pattern

• Fan shaped pattern

• Something standing out
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As mentioned before, you can plot the residuals versus the fits instead of
the explanatory variable
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You will get effectively the same plot with the explanatory variable or the
fitted values on the x axis. This occurs since the fitted values can be
considered a rescaling of the x’s as its just a linear transformation.
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One slight difference you can see is that the order of the plots can flip on
the x axis. This will occur when b < 0. However this won’t affect any
curvature or changing variability in the plot.
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Residuals

The residuals measure departures from the regression line

The size of a typical departure from the regression line can be measured by
the standard deviation of the residuals. This is sometimes referred to as the
Root Mean Square Error (Root MSE or RMSE).

. regress HighMPG Weight

Source | SS df MS Number of obs = 93
---------+------------------------------ F( 1, 91) = 174.43

Model | 1718.69528 1 1718.69528 Prob > F = 0.0000
Residual | 896.616546 91 9.85292907 R-squared = 0.6572
---------+------------------------------ Adj R-squared = 0.6534

Total | 2615.31183 92 28.4273025 Root MSE = 3.1389

The Mean Square Error (MSE) is the variance of the residuals. Note that
it is calculated by

MSE =
SSE

df
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In this example RMSE = 3.14. There are a number of observations with
residuals of this magnitude.
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Outliers and Influential Points

Outliers

• Points that lie outside the overall pattern of the other observations

• When discussing outliers in regression, it usually refers to outliers in the
y direction, i.e. points with big residuals

• You can also can have outliers in the x direction

Influential Points

• Observations, that if removed from the analysis, would give markedly
different results.

• Often outliers in the x direction

Observations can be outliers, influential, both, or neither.

Section 2.4 - Cautions about Regression and Correlation 11



Finding outliers:

Can use the univariate approaches that we have already discussed, e.g.
Boxplots (& 1.5 IQR rule), histograms, etc.

Another popular rule that is often used is to look for residuals satisfying

|ei| > 2RMSE

This rule is based on the normal distribution (which we will talk about soon
when we get back to Section 1.3). As we shall see, this rule has about a 5%
chance of declaring a point an outlier, even if the residuals are all normally
distributed.
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Example: Mathematician Salaries

x: years experience

y: annual salary ($1,000)
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. regress Salary Experience

Source | SS df MS Number of obs = 24
---------+------------------------------ F( 1, 22) = 61.69

Model | 508.068856 1 508.068856 Prob > F = 0.0000
Residual | 181.191175 22 8.23596249 R-squared = 0.7371
---------+------------------------------ Adj R-squared = 0.7252

Total | 689.260031 23 29.9678274 Root MSE = 2.8698

--------------------------------------------------------------------------
Salary | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+--------------------------------------------------------------
Experience | .4187841 .0533195 7.85 0.000 .3082062 .529362

_cons | 29.04785 1.453995 19.98 0.000 26.03245 32.06325
--------------------------------------------------------------------------

By the |ei| > 2RMSE rule, we are looking for |ei| > 5.74.

Observation 19 just misses being picked up by this rule as e19 = −5.71.
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Finding influential points:

• Drop interesting points and refit line

• Influence statistics:

– DFits – Measure of how much the fit of each observation depends on
that observation

– Cook’s D – Measure of how much the fit of all observations depends
on each observation

– DFBetas – Measure of how much a and b change when each
observation is dropped

– leverages – Measure of how of much and observation is an outlier in
the x direction.

– etc

These are all based on the idea of dropping points and rerunning the
regression. However, with smart calculations, they can determined from
the original regression run.
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Lurking Variables

A variable that is not among the explanatory or response variables in a study
(or not considered for the analysis) and yet may influence the interpretation
of relationships among those variables.

Example: Fisher Iris data

4 variables: sepal length, sepal width, petal length, petal width

3 species:

Setosa Versicolor Virginica
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By ignoring species, we miss the more logical pattern of wider sepals being
associated with longer sepals. There is a similar increasing trend for each
species.
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Example: Mathematician Salaries

There are two other possible explanatory variables in the data set, Work
quality and Publication success.

Plotting the residuals against other variables can help find possible lurking
variables.
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In this case, both work quality and publication success are positively
associated with the residuals, suggesting that both these variables should
be added to the model to describe salary.
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. regress Salary Experience WorkQuality Publication

Source | SS df MS Number of obs = 24
---------+------------------------------ F( 3, 20) = 68.12

Model | 627.817014 3 209.272338 Prob > F = 0.0000
Residual | 61.4430168 20 3.07215084 R-squared = 0.9109
---------+------------------------------ Adj R-squared = 0.8975

Total | 689.260031 23 29.9678274 Root MSE = 1.7528

------------------------------------------------------
Salary | Coef. Std. Err. t P>|t|

------------+-----------------------------------------
Experience | .3215197 .0371087 8.66 0.000

WorkQuality | 1.10313 .3295734 3.35 0.003
Publication | 1.288941 .2984792 4.32 0.000

_cons | 17.84693 2.001876 8.92 0.000
------------------------------------------------------
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Ŝal = 29.048 + 0.419Exp

Ŝal = 17.847 + 0.322Exp + 1.103Work + 1.289Pub

So ignoring work quality and publication success tends to lead you to
overestimate the effect of experience on salary. Though the original analysis
is not unreasonable if you only want to use a single predictor to describe
salary.
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The reason that the slope is lower in the combined analaysis is that
experience is positively correlated with work quality and publication success.

. correlate Salary Experience WorkQuality Publication (obs=24)

| Salary Experi~e WorkQu~y Public~n
-------------+------------------------------------

Salary | 1.0000
Experience | 0.8586 1.0000

WorkQuality | 0.6671 0.4670 1.0000
Publication | 0.5582 0.2538 0.3228 1.0000
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Example: Storks and Births in Berlin

Solid squares: number of pairs of storks
in Brandenburg

Open diamonds: number of out of hospital
deliveries in Berlin
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Association Does Not Imply Causation

An association between two variables, even if it is very strong, is not by
itself good evidence that changes in one variable actually cause changes in
the other.

This is an example of spurious correlation.

Conversely, a lack of correlation does not imply that a causal relationship
doesn’t exist.

There could a lurking variable that is masking the causal effect.
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