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General Probability Rules

Rules of Probability - So Far

1. 0 ≤ P [A] ≤ 1 for any event A.

2. P [S] = 1.

3. Complement Rule: For any event A,

P [Ac] = 1− P [A]

4. Addition Rule: If A and B are disjoint events,

P [A or B] = P [A] + P [B]

5. Multiplication Rule: If A and B are independent events,

P [A and B] = P [A]× P [B]
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For these last two rules there are restrictions that we have seen matter.
How can we modify the rules to make them more general.

Addition Rule for Disjoint Events

If A,B, and C are disjoint events, then

P [A or B or C] = P [A] + P [B] + P [C]

This rule extends to an arbitrary number
of disjoint events.
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General Rule for Unions of 2 Events

Note that the two events A & B do not need to be disjoint. As we’ve
seen earlier, adding the two probabilities will not give the correct answer for
P [A or B]. Instead,

P [A or B] = P [A] + P [B]− P [A and B]

P [A] = P [A and B] + P [A and Bc]

P [B] = P [A and B] + P [Ac and B]

The event A and B gets double counted
in P [A] + P [B].

Note that the disjoint rule is a special case of this, since for disjoint events
A and B, P [A and B] = 0.
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Example: Sum of two rolls of a 4-sided die

• A = Sum is even = {2, 4, 6, 8}

• C = Sum > 6 = {7, 8}

P [A or C] = P [A] + P [C]− P [A and C] =
8
16

+
3
16
− 1

16
=

10
16
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More complicated versions of this rule exist for 3 or more events.

For example, for three events A,B, and C,

P [A or B or C] = P [A] + P [B] + P [C]

−P [A and B]− P [A and C]− P [B and C]

+P [A and B and C]
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Conditional Probability

Interested in two events A and B. Suppose that we know that A occurs.
What is the probability that B occurs knowing that A occurs?

Examples:

• Rainfall

A: Rains today
B: Rains tomorrow

Does knowing whether it rains today change our belief that it will rain
tomorrow.

Denoted P [B|A] (the probability of B given A occurs).

• Switches

Does knowing whether the switch is from company 1 or 2 tell us anything
about whether the switch is defective?
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• Disease testing

A: has disease
B: positive test

P [+ test | has disease] = 0.98

98% of the time, tests on people with the disease come up positive.
(P [B|A])

P [+ test | no disease] = 0.07 (P [B|Ac])

These imply that

P [− test | has disease] = 1− 0.98 = 0.02

P [− test | no disease] = 1− 0.07 = 0.93

What is the probability of

P [+ test & has disease]

or
P [− test & no disease]
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To answer these questions, we also need to know

P [disease] = 0.01 (P [A]) ⇒ P [no disease] = 0.99 (P [Ac])

General Multiplication Rule

P [A and B] = P [A]× P [B|A]

To be in both, first you must be in A
(giving the P [A] piece), then given that
you are in A, you must be in B (giving
the P [B|A] piece).
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P [+ test & has disease] = P [has disease]P [+ test | has disease]

= 0.01× 0.98 = 0.0098

P [− test & no disease] = P [no disease]P [− test | no disease]

= 0.99× 0.93 = 0.9207

Disease No Disease Test Status

+ Test 0.01× 0.98 = 0.0098 0.99× 0.07 = 0.0693 0.0791

– Test 0.01× 0.02 = 0.0002 0.99× 0.93 = 0.9207 0.9209

Disease Status 0.01 0.99 1
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Marginal Probabilities

P [+ test] and P [− test]

P [+ test] = P [+ test & has disease] + P [+ test & no disease]

= 0.0098 + 0.0693 = 0.0791

P [− test] = P [− test & has disease] + P [− test & no disease]

= 0.0002 + 0.9207 = 0.9209

= 1− 0.0791

These were gotten by adding across each row of the table.

The probabilities discussed in the example are based on an ELISA (enzyme-
linked immunosorbent assay) test for HIV.
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Conditional Probability

When P [A] > 0

P [B|A] =
P [A and B]

P [A]

What is P [disease |+ test] and P [disease |+ test]?

P [disease |+ test] =
P [+ test & has disease]

P [+ test]

=
0.0098
0.0791

= 0.124
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P [ no disease | − test] =
P [− test & no disease]

P [− test]

=
0.9207
0.9209

= 0.99978

Note that P [A|B] and P [B|A] are two completely different quantities.

Note that the other rules of probability must be satisfied by conditional
probabilities. For example P [Bc|A] = 1− P [B|A].
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Bayes’ Rule

Bayes’ Rule gives an approach to calculating
conditional probabilities. It allows for switching the
order of conditioning (from P [B|A] to P [A|B]).

P [A|B] =
P [B|A]P [A]

P [B|A]P [A] + P [B|Ac]P [Ac]

=
P [A&B]

P [A&B] + P [Ac&B]
=

P [A&B]
P [B]

Assuming that P [A] isn’t 0 or 1.

Note that the above picture is the only known portrait of the
Reverend Thomas Bayes F.R.S. (1701? - 1761), who derived the
result. However there are questions to whether this is actually
Bayes. The methods described could be used to determine
P [Actual picture of Bayes | Information on picture and Bayes].
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The earlier calculations of P [disease |+ test] and P [ no disease | − test]
were applications of this rule. The different steps were broken down into
their constituent pieces.

Example (Monty Hall problem):

There are three doors. One has a car behind it and the
other two have farm animals behind them. You pick
a door, then Monty will open another door and show
you some farm animals and allow you to switch. You
then win whatever is behind your final door choice.
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You choose door 1 and then Monty opens door 2 and shows you the farm
animals. Should you switch to door 3?

Answer: It depends

Three competing hypotheses D1, D2, and D3 where

Di = {Car is behind door i}

What should our observation A (the event we want to condition on) be?

We want to condition on all the available information, implying we should
use

A = {After door 1 was selected, Monty chose door 2 to be opened}
Prior probabilities on car location: P [Di] = 1

3, i = 1, 2, 3
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Likelihoods:

P [A|D1] =
1
2

(∗)
P [A|D2] = 0

P [A|D3] = 1

P [A] =
1
2
× 1

3
+ 0× 1

3
+ 1× 1

3
=

1
2

Conditional probabilities on car location:

P [D1|A] =
1
2 × 1

3
1
2

=
1
3

No change!

P [D2|A] =
0× 1

3
1
2

= 0

P [D3|A] =
1× 1

3
1
2

=
2
3

Bigger!
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If you are willing to assume that when two empty doors are available,
Monty will randomly choose one of them to open (with equal probability)
(assumption *), then you should switch. You’ll win the car 2

3 of the time.

Now instead, assume Monty opens the door based on the assumption

P [A|D1] = 1 (∗∗)

i.e. Monty will always choose door 2 when both doors 2 and 3 have animals
behind them. (The other two are the same as before.) Now

P [A] = 1× 1
3

+ 0× 1
3

+ 1× 1
3

=
2
3
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Now the posterior probabilities are

P [D1|A] =
1× 1

3
2
3

=
1
2

P [D2|A] = 0

P [D3|A] =
1× 1

3
2
3

=
1
2

So in this situation, switching doesn’t help (doesn’t hurt either).

Note: This is an extremely subtle problem that people have discussed
for years (go do a Google search on Monty Hall Problem). Some of the
discussion goes back before the show Let Make a Deal ever showed up
on TV. The solution depends on precise statements about how doors are
chosen to be opened. Changing the assumptions can lead to situations
that changing can’t help and I believe there are situations where changing
can actually be worse. They can also lead to situations where the are
advantages to picking certain doors initially.
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The General Multiplication Rule mentioned earlier can be extended. For
example

P [A and B and C] = P [A]P [B|A]P [C|A and B]

The key in applying this extension to more events is that the conditioning
has to be all of the preceding events, i.e.

P [ABCD] = P [A]P [B|A]P [C|AB]P [D|ABC]

This approach can be used to build up extremely flexible models for
modelling complex phenomena. (Hierarchical modelling)

This is precisely the approach taken in the Sea Surface Temperature example
discussed on the first day of class.
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Tree diagrams

Example: Warranty purchases

Each branch corresponds to a different event and each has a conditional
probability associated with it.

By following the path and multiplying the probabilities along the path, the
probability of any combination of events can be calculated.
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Example: Jury selection

When a jury is selected for a trial, it is possible that a prospective can
be excused from duty for cause. The following model describes a possible
situation.

• Bias of randomly selected juror

- B1: Unbiased
- B2: Biased against the prosecution
- B3: Biased against the defence

• R: Existing bias revealed during questioning

• E: Juror excused for cause
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The probability of any combination of these three factors can be determined
by multiplying the correct conditional probabilities. The probabilities for all
twelve possibilities are

R Rc

E Ec E Ec

B1 0 0 0 0.5000

B2 0.0595 0.0255 0 0.0150

B3 0.2380 0.1020 0 0.0600

For example P [B2 ∩R ∩ Ec] = 0.1× 0.85× 0.3 = 0.0255.

Section 4.4 - General Probability Rules 22



From this we can get the following probabilities

P [E] = 0.2975 P [Ec] = 0.7025
P [R] = 0.4250 P [Rc] = 0.5750

P [B1 ∩ E] = 0 P [B2 ∩ E] = 0.0595 P [B3 ∩ E] = 0.238
P [B1 ∩ Ec] = 0.5 P [B2 ∩ Ec] = 0.0405 P [B3 ∩ Ec] = 0.162

From these we can get the probabilities of bias status given that a person
was not excused for cause from the jury.

P [B1|Ec] = 0.5
0.7025 = 0.7117 P [B1|E] = 0

0.2975 = 0

P [B2|Ec] = 0.0405
0.7025 = 0.0641 P [B2|E] = 0.0595

0.2975 = 0.2

P [B3|Ec] = 0.1620
0.7025 = 0.2563 P [B3|E] = 0.238

0.2975 = 0.8
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Independence and Conditional Probability

Two events A and B are independent if

P [B|A] = P [B]

So knowledge about whether A occurs or not, tells us nothing about whether
B occurs.

Example: HIV test

• P [Disease] = 0.01

• P [Disease|+ test] = 0.124

• P [Disease| − test] = 0.00022

So disease status and the test results are dependent.
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Example: Switch example

Sample two switches from a batch and examine whether they meet design
standards

1st OK 1st Defective

2nd OK 0.9025 0.0475 0.95

2nd Defective 0.0475 0.0025 0.05

0.95 0.05 1

P [1st Defective] = 0.05

P [1st Defective|2nd Defective] = 0.05

So whether the 1st switch is defective is independent of whether the 2nd is
defective.

So this gives another way of checking for independence in addition to the
earlier idea of seeing whether P [A and B] = P [A]P [B].
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The multiplication rule for independent events is just a special case of the
more general multiplication rule.

If A and B are independent P [A] = P [A|B], so

P [A|B]P [B] = P [A]P [B]

Also if P [A|B] = P [A], then P [B|A] = P [B]. (Independence has no
direction)
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