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Distributions

When dealing with inference procedures, there are two different distributions
that you need to keep track of

Population Distribution

The population distribution of a variable is the distributions of its
values for all members of the population. The population distribution
is also the probability distribution of the variable when we choose one
individual from the population at random.

Sampling Distribution

A statistic from a random sample or randomized experiment is a
random variable. The probability distribution of the statistic is its
sampling distribution.
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Binomial Distribution

Example: Did you attend church of synagogue in the previous week?

Sampled 1785 and 550 said yes. This gives a sample proportion of

p̂ =
550
1785

= 0.42

What is the sampling distribution of p̂?

This can be modelled with the Binomial Distribution.
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Binomial Distribution

1. Fixed number of observations n

2. Each of the n observations are independent

3. Each observation falls into one of two categories, which for convenience
get called “Success” and “Failure”

4. The probability of successes (call it p), is the same for each observation

Interested in the number of successes (call it X).

X is said to have a binomial distribution with parameters n and p.
(X ∼ Bin(n, p)).
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Binomial or not?

1. Flip a coin 20 times and count the number of heads.

Yes. Bin(n = 20, p = 0.5) if its a fair coin.

2. Draw 5 cards from a standard deck of cards and count the number of
black cards.

No. The draws are not independent which implies that the probabilities
change as you go through the draws.

P [1st card black] =
1
2

P [2nd card black|1st card black] =
25
51

P [2nd card black|1st card red] =
26
51

Section 5.1 - Sampling Distributions for Counts and Proportions 5



3. Number of faulty switches out of 6 from one company. P [Faulty] = 0.2

Probably ok.

4. The number of successful field goals that Adam Vinatieri will kick in
Sunday’s Patriots game.

No. n, the number of kicks is random and currently unknown.

5. Take a simple random sample of 1000 voters. Count the number who
say that they voted to re-elect President Bush.

Close, but not quite. Its similar to the deck example.

When the population is much larger that the sample size, the count of
successes in a SRS of size n has approximately a Bin(n, p) distribution if
the population proportion of successes is p.

Rule of thumb for the approximation to be ok

Population size > 10n
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Lets suppose that we have a population of 100,000 individuals and that
20% are “successes”

P [Success on draw 1] = 0.2

P [Success on draw 2|Success on draw 1] =
19999
99999

= 0.199992

P [Success on draw 2|Failure on draw 1] =
20000
99999

= 0.200002

The success probabilities won’t change much as the various units get
sampled.

Now suppose that the population size is 5, still with a 20% “success” rate

P [Success on draw 1] = 0.2

P [Success on draw 2|Success on draw 1] =
0
4

= 0

P [Success on draw 2|Failure on draw 1] =
1
4

= 0.25
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Calculating binomial probabilities

The probability of exactly k successes when X ∼ Bin(n, p) is

P [X = k] =
(

n

k

)
pk(1− p)n−k

where

(
n

k

)
=

n!
k!(n− k)!

is the number of ways of choosing k items from n. Its often pronounced n
choose k for this reason.
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Motivation:

For each trial P [Success] = p; P [Failure] = 1− p

Assume that k successes are followed by n− k failures.

This has probability

p× p× . . .× p︸ ︷︷ ︸
k

× (1− p)× (1− p)× . . .× (1− p)︸ ︷︷ ︸
n−k

= pk(1− p)n−k

Now each other possibility with k successes has exactly the same probability,
which implies

P [X = k] =
(

n

k

)
pk(1− p)n−k
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Why is
(
n
k

)
the number of ways of choosing k items from n?

You have n ways of picking the first success, then n − 1 ways of picking
the second success after the first one, and so on down to n− k + 1 ways of
picking the kth success.

Multiplying these together gives

n× (n− 1)× (n− 2)× . . .× (n− k + 1) =
n!

(n− k)!

Now the order of the successes doesn’t matter. Given k items there is k!
different ways of ordering them. You have k choices for the list item in
the list, which leaves k − 1 choices for the 2nd item in the list, and so.
Combining this with the above gives

(
n

k

)
=

n!
k!(n− k)!
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One way of getting probabilities involving binomials is to work with the
earlier probability formula.

For example, if X ∼ Bin(6, 0.2)

P [X > 4] = P [X = 5] + P [X = 6]

=
(

6
5

)
0.250.81 +

(
6
6

)
0.260.80

= 0.0016
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Another option is to work with binomial probability tables (Table C in Moore
and McCabe)

This table gives binomial
probabilities for certain
choices of n and p.

For the X ∼ Bin(6, 0.2)
example, we need to look
at the block with n = 6
and p = 0.2.
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The table doesn’t have anything for p > 0.5. This is not a problem as we
can just switch the definition of “success” and “failure” to fit the problem.

Let X ∼ Bin(n, p) and Y ∼ Bin(n, 1− p). Then

P [X = k] =
(

n

k

)
pk(1− p)n−k = P [Y = n− k]

Most stat packages, Excel, scientific calculators can also be used to get
binomial probabilities. There is one big advantage to using software: n and
p are not restricted. For example, if X ∼ Bin(11, 0.78),

P [X = 7] = 0.1358

which isn’t available from the table.
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The binomial distribution is always unimodal, but can be symmetric or
skewed. It is symmetric if p = 0.5, skewed left if p < 0.5 and skewed right
if p > 0.5
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Mean and Variance of a Binomial

µx =
n∑

x=0

x

(
n

x

)
px(1− p)n−x

by the definition of the mean for a discrete random variable. However this
is somewhat ugly, though can be solved with a little algebra. The variance
is even worse (though still solvable this way)

σ2
x =

n∑
x=0

(x− µx)2
(

n

x

)
px(1− p)n−x

There is an easier way to get a handle on this though.

Define Zi to be the result of trial i where

Zi =

{
1 trial i is a success
0 trial i is a failure
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Therefore X = Z1 + Z2 + . . . + Zn, the sum of n independent random
variables. So we need to figure out µz and σ2

z.

These are easy, as

µz = 0× (1− p) + 1× p = p

σ2
z = (0− p)2 × (1− p) + (1− p)2 × p = p(1− p)

These give

µx = µz1 + µz2 + . . . + µzn

= p + p + . . . + p = np

σ2
x = σ2

z1
+ σ2

z2
+ . . . + σ2

zn

= p(1− p) + p(1− p) + . . . + p(1− p) = np(1− p)

σx =
√

np(1− p)
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So for the switch example (Bin(6, 0.2))

µx = 6× 0.2 = 1.2

σ2
x = 6× 0.2× 0.8 = 0.96

σx =
√

6× 0.2× 0.8 =
√

0.96 = 0.9798
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Sample Proportions

p̂ =
# successes
sample size

=
X

n

So if we know X we know p̂, and vice versa.

Probability Calculations

We can use this one to one relationship between sample proportions and
counts to do probability calculations

Example: Switch example (Bin(6, 0.2))

P [p̂ ≥ 0.5] = P [X ≥ 3]

= P [X = 3] + P [X = 4] + P [X = 5] + P [X = 6]

= 0.0989

Section 5.1 - Sampling Distributions for Counts and Proportions 18



We can also use this idea to get means and variances for proportions.

µp̂ =
1
n
µx =

1
n
np = p

σ2
p̂ =

1
n2

σ2
x =

1
n2

np(1− p) =
p(1− p)

n

σp̂ =
√

σ2
p̂ =

√
p(1− p)

n

This is based on the rules discussed earlier for linear transformations of
random variables.
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So for the switch example

µp̂ = 0.2

σ2
p̂ =

0.2× 0.8
6

= 0.02667

σp̂ =

√
0.2× 0.8

6
=
√

0.02667 = 0.1633
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Notice that as n increases,

σp̂ =

√
p(1− p)

n

decreases. This implies that with a larger sample size, you are more likely
to have your sample proportion close to the true population proportion.

Its also a justification of using long run frequencies to motivate probabilities.
With a little more work (take Stat 110 to see it), you can show that

p̂n → p

as n →∞.
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Example: Flip a coin 100 times. Count the number of heads. What is
P [p̂ ≥ 0.6]? Similarly for 1000 flips.

100 flips:

P [p̂ ≥ 0.6] = P [X ≥ 60]

= P [X = 60] + P [X = 61] + . . . + P [X = 100]

1000 flips:

P [p̂ ≥ 0.6] = P [X ≥ 600]

= P [X = 600] + P [X = 601] + . . . + P [X = 1000]

In theory its easy to get the answer – just add up a whole bunch of terms.
In fact its easy in Stata as there is a function (Binomial(n,k,p)) which
gives probabilities of the form P [X ≥ x]. Other packages have similar
functions though most are based on P [X ≤ x], the Binomial CDF.
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Both of these cases are symmetric and unimodal. In fact, both are close to
normal distributions.

Normal Approximation to the Binomial

When n is large, p̂ is approximately normally distributed with

µp̂ = p

σp̂ =

√
p(1− p)

n

and X is also approximately normal with

µx = np

σx =
√

np(1− p)

Section 5.1 - Sampling Distributions for Counts and Proportions 24



For n = 100 flips

µp̂ = 0.5

σp̂ =

√
0.5× 0.5

100
= 0.05

Z =
p̂− 0.5
0.05

is approximately N(0, 1)
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]

= P [Z ≥ 2] ≈ 0.0228

The true probability is 0.0284.
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For n = 1000 flips

µp̂ = 0.5

σp̂ =

√
0.5× 0.5

1000
= 0.0158
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]

= P [Z ≥ 6.329]

≈ 1.234× 10−10

The true probability is 1.364× 10−10.
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Should John Kerry have conceded Ohio while the provisional and absentee
ballots still needed to be counted?

Assumptions:

• Kerry is behind by 140,000 votes (its slightly less than this).

• There are 200,000 valid ballots still to be counted (probably a bit higher
than actually the case)

• For each ballot, P [Kerry] = 2
3, P [Bush] = 1

3 (this is the split in Cuyahoga
county, the county John Kerry his highest percentage in Ohio)

For John Kerry to win Ohio, he needs to get over 170,000 (85%) of the
200,000 votes to be counted.

Assuming that these ballots can be considered by a Binomial model with
the probabilities given above, what is the probability that John Kerry would
get enough votes?
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µx = 200000× 2
3

= 133333.3

σx =

√
200000× 2

3
× 1

3
= 210.82

P [X ≥ 170000] = P

[
X − 133333.3

210.82
≥ 170000− 133333.3

210.82

]

= P [Z ≥ 173.92]

≈ 0 (< 10−6570)

This is the most extreme z-score I have ever seen. Remember that the table
in the book only goes up to 3.49. Kerry has no chance of passing Bush,
assuming everything is on the up and up in Ohio.
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Now lets look at different combinations of n and p to see how well the
approximation works. Let p = 0.2 and 0.5 and n = 6, 49, 100, 1000.
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The approximation appears to work better when n is bigger and when p is
close to 0.5.

Rule of Thumb:

The approximation is ok if

np ≥ 10 and n(1− p) ≥ 10

e.g. the expected number and successes and failures are both at least
10.

So the closer p gets to 0 or 1, the bigger n needs to be
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So for p = 0.2, what is P [p̂ ≤ 0.1] for various sample sizes

n Normal Approximation True Probability

10 0.21460 0.37581

50 0.03855 0.04803

100 0.00621 0.00570

200 0.00020 0.00011
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Continuity correction

Suppose we want to get P [X ≤ 12] by using the normal
approximation. Notice that for the bar corresponding
to X = 12, the normal curve picks up about half the
area, as the bar gets drawn from 11.5 to 12.5.

The normal approximation for this problem can be
improved if we ask for the area under the normal curve
up to 12.5

True Prob = 0.2229

Estimated Prob (no correction) = 0.1773

Estimated Prob (correction) = 0.2202

While this does give a better answer, for many problems, I recommend
ignoring it. If the correction makes an important difference, you probably
want to be doing an exact probability calculation instead.
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