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t Distributions

Our initial approach to inference on the mean of a population made the
assumption that the variance of the population being sampled from was
known.

Most of the time this is an unreasonable assumption and one that is not
required to be made.

As mentioned many times before, σ can be estimated by s, so we can use
this to get the standard error

SEx̄ =
s√
n

Instead of basing inference on

z =
x̄− µ

σ/
√

n
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it will be based on

t =
x̄− µ

s/
√

n

If the observations X1, X2, . . . , Xn are
drawn from a SRS from a N(µ, σ)
distribution, the quantity t has a Student t
distribution with n− 1 degrees of freedom
(denoted by t(n− 1)).

So for every sample size n, we get a different distribution.

The t distributions are centered at 0 and symmetric like the N(0, 1)
distribution, but they are more spread out. As the degrees of freedom
increases, the distribution gets closer and closer to a N(0, 1).
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The extra variability in the t distributions makes sense. Since we are
plugging in an estimate of σ, we are less certain about the distribution we
are sampling from, so that extra uncertainty needs to be accounted for.

As we have more data, we have more information about the distribution we
are sampling from, so our inferences should act more like the case when we
know σ.
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Confidence Intervals for a Population Mean

Similar to before, replace the normal critical value z∗ with the t critical
value t∗.
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T ~ t(n−1)

−t* t*

Prob = C

Prob =
1 − C

2
Prob =

1 − C
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A 100C% CI for µ is

x̄± t∗
s√
n

where t∗ satisfies

P [−t∗ ≤ T ≤ t∗] = C

and T ∼ t(n−1). The t critical values
t∗ can be obtained from Table D.

This interval is exact if the population
distribution is normal and approximately correct for large n in other cases.
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To get the correct critical
value, go to row n −
1 and the column with
confidence level C.
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Example: Nickel content of ore

A new batch of ore is to be tested for its nickel content to determine
whether it is consistent with the usual mean content of 3.25% that has
been found in past batches. Ten sample were taken.

3.2 3.25 3.3 3.35 3.4

Nickel
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. summarize Nickel, detail

Nickel
-------------------------------------------------------------

Percentiles Smallest
1% 3.23 3.23
5% 3.23 3.24

10% 3.235 3.25 Obs 10
25% 3.25 3.26 Sum of Wgt. 10

50% 3.28 Mean 3.289
Largest Std. Dev. .0470106

75% 3.33 3.31
90% 3.355 3.33 Variance .00221
95% 3.37 3.34 Skewness .3705281
99% 3.37 3.37 Kurtosis 1.867116
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Lets look at a 90% CI for µ. With n− 1 = 9, t∗ = 1.833

3.289± 1.833
0.0470√

10
= 3.289± 1.833× 0.0148

= 3.289± 0.027 = (3.262, 3.316)

. ci Nickel, level(90)

Variable | Obs Mean Std. Err. [90% Conf. Interval]
---------+---------------------------------------------------------------
Nickel | 10 3.289 .0148661 3.261749 3.316251
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One-sample t Test of a Population Mean

Again its similar to the normal z test. The test statistic for examing
H0 : µ = µ0 is

t =
x̄− µ0

s/
√

n

The p-values for this test statistic are

HA : µ > µ0 p-value= P [T ≥ tobs]
HA : µ < µ0 p-value= P [T ≤ tobs]
HA : µ 6= µ0 p-value= 2× P [T ≥ |tobs|]

where T ∼ t(n − 1). These are analogous to the z test with the normal
distribution there replaced by the appropriate t distribution.
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For the nickel example with H0 : µ = 3.25,

t =
3.289− 3.250
0.0470/

√
10

=
0.039
0.0149

= 2.6234

For HA : µ 6= 3.25,

p− value = 2× P [T ≥ 2.6234] = 2× 0.0138 = 0.0277

So there appears to be some evidence that the mean nickel content isn’t
3.25%.
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. ttest Nickel == 3.25

One-sample t test

------------------------------------------------------------------------
Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
---------+--------------------------------------------------------------
Nickel | 10 3.289 .0148661 .0470106 3.255371 3.322629

------------------------------------------------------------------------
Degrees of freedom: 9

Ho: mean(Nickel) = 3.25

Ha: mean < 3.25 Ha: mean != 3.25 Ha: mean > 3.25
t = 2.6234 t = 2.6234 t = 2.6234

P < t = 0.9862 P > |t| = 0.0277 P > t = 0.0138
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How to get p-values without a computer

There are no tables similar to Table A, the CDF function for the N(0, 1)
distribution, so it is not possible to get an exact p-valuewith a computer or
calculator.

The reason for the lack of table is that you would need one for each possible
sample size.

However, using Table D, we can put bounds on the p-value.
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Find value in the row with n− 1 df that flank |tobs| = 2.6234.

In this case its 2.389 (pu = 0.02) and 2.821 (pl = 0.01).

Then for the possible three alternative hypotheses,

HA : µ > µ0 pl ≤ p-value ≤ pu

HA : µ < µ0 (1− pu) ≤ p-value ≤ (1− pl)
HA : µ 6= µ0 2pl ≤ p-value ≤ 2pu
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So for the two sided example, the bounds on the p-valueare 0.02 and 0.04.
The true p-valueis 0.027, which is in the range.

What if the degrees of freedom you’re interested in aren’t in the table (for
CIs and tests)?

Use the row above where the desired row should be. For example, if the
desired df = 45, use the row for df = 40.
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For CIs, this will give slightly wider CIs than if you use correct degrees of
freedom, since the critical value is slightly larger with smaller dfs.

For 95% confidence

df = 40 t∗ = 2.021

df = 45 t∗ = 2.014

Similarly for tests, you will get slightly bigger p-values using this
approximation.

When the degrees of freedom is smaller, you will see bigger difference
between the rows. This approximation is more conservative for smaller
sample sizes.
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Look at EPA Highway MPG ratings
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Let’s suppose this was a sample from the population of 1993 cars models.

Suppose we were interested in testing H0 : µ = 31
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. ttest HighMPG == 31

One-sample t test

--------------------------------------------------------------------------
Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
---------+----------------------------------------------------------------
HighMPG | 93 29.08602 .5528742 5.331726 27.98797 30.18408

--------------------------------------------------------------------------
Degrees of freedom: 92

Ho: mean(HighMPG) = 31

Ha: mean < 31 Ha: mean != 31 Ha: mean > 31
t = -3.4619 t = -3.4619 t = -3.4619

P < t = 0.0004 P > |t| = 0.0008 P > t = 0.9996
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The normality assumption doesn’t seem to be particularly reasonable here.
The histogram and normal score plot both exhibit right skewness.

However the t test and t CI are fairly robust against non-normality except
in the case of outliers and strong skewness.

Robust Procedure

A statistical inference procedure is called robust if the probability
calculations required are insensitive to violations of the assumptions
made.

Since the t procedures are fairly robust, I wouldn’t worry about the
concluding that the mean highway MPG is not 31 MPG since the p-value is
way below 0.05 for the two-sided test.

If instead, it had been say 0.047, you might want to be careful about making
strong statements about the result being statistically significant.
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Paired Comparison Design

Usually in statistics, we aren’t interesting in one group of treatment, but in
comparing groups or treatments.

The paired comparison design is one of the easiest ways of comparing two
treatments.

In this design, observations are paired, with one getting one treatment and
the other getting the other treatment. This matching has to be done on
the basis of the units and the design, not the data. Possible matching could
be done with twins, right and left eye, etc.
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Paired t Procedures

Example: Shoe sole material

10 boys wearing special shoes. One shoe made with material A and the
other with material B.
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The approach to analysis in this design is to look at the difference in the
responses for the two treatments.

Response: x = Material A wear − Material B wear

Then perform the appropriate one-sample t procedure on this difference.
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. summarize diff

Variable | Obs Mean Std. Dev. Min Max
-------------+---------------------------------------------------

diff | 10 -.410000 .387155 -1.1 .2

A 95% CI for µ, the difference in mean wear is given by

t∗ = 2.262 (df = 9)

−0.41± 2.262
0.3872√

10
= −0.41± 2.262× 0.1224

= −0.41± 0.2769 = (−0.687,−0.133)

Section 7.1 - Inference on the Mean of a Population 23



For testing H0 : µ = 0,

t =
−0.41− 0

0.3872/
√

10
=
−0.41
0.1224

= −3.35

For HA : µ 6= 0 (as there is no reason to prefer one material),

p− value = 2× P [T ≥ | − 3.35|] = 2× 0.0043 = 0.0086

We have fairly good evidence that Material A tends to have less wear than
Material B
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. ttest diff == 0

One-sample t test

-------------------------------------------------------------------------
Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
---------+---------------------------------------------------------------

diff | 10 -.4100001 .1224292 .387155 -.6869541 -.1330461
-------------------------------------------------------------------------
Degrees of freedom: 9

Ho: mean(diff) = 0

Ha: mean < 0 Ha: mean != 0 Ha: mean > 0
t = -3.3489 t = -3.3489 t = -3.3489

P < t = 0.0043 P > |t| = 0.0085 P > t = 0.9957
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Assumptions underlying the paired t procedures

Need to differences in the observations to have a normal distribution for
inference to be valid.

The actual observations do no need to be normally distributed.

Also for paired t tests, the null hypothesis is almost always H0 : µ = 0,
though in theory it could be anything. Usually you are looking to see if
there is a difference in the two treatments or groups and if it exists how big
it is.
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