
Statistics 110 – Assignment 1 Solutions Summer, 2006

1. Rice 1.17

Let k be the number of defective items in the batch of 100 and define
p = P [item selected is defective] = k

100
. Then

P [the lot is accepted] =P [all the 4 selected items are not defective]

=

(
100−k

4

)
(
100
4

)

=
100− k

100
× 99− k

99
× 98− k

98
× 97− k

97

0 20 40 60 80 100

0.
0

0.
4

0.
8

Percentage Defective

P
[L

ot
 A

cc
ep

te
d]

2. Rice 1.20

There are only 49 ways to place 4 aces which are all next to each other without considering
their order. And there are

(
52
4

)
ways to place 4 aces out of a deck of 52 cards. So the answer

is
49(
52
4

) ≈ 1.81× 10−4.

3. Rice 1.22
There are 4× 3 = 16 face cards (if aces included as face cards), so

P [No face card is turned up] =

(
52−16

n

)
(
52
n

)

=
36

52
× 35

51
× · · · × 36− n + 1

52− n + 1
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The probability of at least one face card is turned up among the n cards is

pn = 1− 36

52
× 35

51
× · · · × 36− n + 1

52− n + 1

n pn

1 0.3077

2 0.5249

3 0.6770

4 0.7824

So n needs to be 2 for this probability to be about 0.5.

If aces are not considered as face cards, then

pn = 1−
(
40
n

)
(
52
n

)

and

n pn

1 0.2308

2 0.4118

3 0.5529

4 0.6624

So n needs to be 3 for this probability to be about 0.5 in this case.

4. (a)

P [A ∪B] = P [A] + P [B]− P [A ∩B]

≤ P [A] + P [B]

since P [A ∩B] ≥ 0. Another approach is to note the following three facts

i. A ∪B = (A ∩Bc) ∪B

ii. (A ∩Bc) ⊂ A ⇒ P [A ∩Bc] ≤ P [A]

iii. A ∩Bc and B are disjoint sets

Then
P [A ∪B] = P [A ∩Bc] + P [B] ≤ P [A] + P [B]
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(b) In (a), we showed the inequality holds when n = 2. Suppose for n ≤ k, the equation
also holds. Then for n = k + 1,

P [A1 ∪ A2 ∪ · · · ∪ Ak ∪ Ak+1] = P [(A1 ∪ A2 ∪ · · · ∪ Ak) ∪ Ak+1]

≤ P [A1 ∪ A2 ∪ · · · ∪ Ak] + P [Ak+1]

(since it holds for 2 sets)

≤ P [A1] + P [A2] + · · ·+ P [Ak] + P [Ak+1]

(by the induction hypothesis)

So the inequality must hold for n = k + 1.

5. Rice 1.50, 1.51

Ai = the face value of dice i, and i = 1, 2.

P [{A1 = 3} ∪ {A2 = 3}|A1 + A2 = 6] =
P [({A1 = 3} ∪ {A2 = 3}) ∩ {A1 + A2 = 6}]

P [A1 + A2 = 6]

=
P [A1 = 3, A2 = 3]∑5

i=1 P [{A1 = i} ∩ {A2 = 6− i}]

=
1
6
× 1

6

5× 1
6
× 1

6

=
1

5

Note that if A1 + A2 < 6, {A1 = 3} ∩ {A2 = 3} = ∅, so

P [{A1 = 3} ∪ {A2 = 3}|A1 + A2 < 6] = P [A1 = 3|A1 + A2 < 6] + P [A2 = 3|A1 + A2 < 6]

= 2P [A1 = 3|A1 + A2 < 6]

= 2
P [{A1 = 3} ∩ {A1 + A2 < 6}]

P [A1 + A2 < 6]

= 2
P [A1 = 3, A2 = 2] + P [A1 = 3, A2 = 1]∑4

i=1

∑5−i
j=1 P [A1 = i]P [A2 = j]

= 2
2× 1

36
1
36
× (1 + 2 + 3 + 4)

=
2

5

6. Rice 1.54

Define the events R0 = rain today, Ri = rain i days from now.

(a)
P [R1] = P [R1|R0]P [R0] + P [R1|Rc

0]P [Rc
0] = αp + (1− β)(1− p)
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(b)

P [R2] = P [R2|R1]P [R1] + P [R2|Rc
1]P [Rc

1]

= P [R2|R1]P [R1] + P [R2|Rc
1](1− P [R1])

= αP [R1] + (1− β)(1− P [R1])

= (α + β − 1)P [R1] + 1− β

= (α + β − 1)(αp + (1− β)(1− p)) + (1− β)

= (α + β − 1)2p + (α + β − 1)(1− β) + (1− β)

(c)

P [Rn] = P [Rn|Rn−1]P [Rn−1] + P [Rn|Rc
n−1]P [Rc

n−1]

= αP [Rn−1] + (1− β)(1− P [Rn−1])

= (α + β − 1)P [Rn−1] + (1− β)

= (α + β − 1)2P [Rn−2] + (α + β − 1)(1− β) + (1− β)

= (α + β − 1)nP [R0] + (α + β − 1)n−1(1− β) + (α + β − 1)n−2(1− β)

+ · · ·+ (1− β)

= (α + β − 1)np +
1− (α + β − 1)n

1− (α + β − 1)
(1− β)

So P [Rn] → 1−β
(1−β)+(1−α)

= p∞.

Another way of seeing this limit, is that if it exists, it must satisfy

p∞ = αp∞ + (1− β)(1− p∞)

Solving for p∞ gives the above limit.

7. Rice 1.56

Define the events A1 = the oldest is a girl, A2 = the youngest is a girl. Assume that
P [A1] = P [A2] = 0.5 (not quite true but close enough) and that A1 and A2 are independent.

P [A1 ∩ A2|A1] =
P [A1 ∩ A2]

P [A1]
=

P [A1]P [A2]

P [A1]
=

1

2

P [A1 ∩ A2|A1 ∪ A2] =
P [A1 ∩ A2]

P [A1 ∪ A2]

Since P [A1 ∪A2] = P [A1 ∩Ac
2] + P [Ac

1 ∩A2] + P [A1 ∩A2] = 3
4
, then above equation gives 1

3
.
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8. Rice 1.60

Let Ai = the product comes form ith shift, i = 1, 2, 3. Since all the shifts have the same
productivity, P [Ai] = 1

3
, i = 1, 2, 3. Let D =the product is defective. Then

P [D] =
3∑

i=1

P [D|Ai]P [Ai] =
1% + 2% + 5%

3
= 2.67%.

P [A3|D] =
P [A3 ∩D]

P [D]
=

5%
3

1%+2%+5%
3

= 0.625.

9. Rice 1.62

P [A] = P [A|E]P [E] + P [A|Ec]P [Ec]

≥ P [B|E]P [E] + P [B|Ec]P [Ec] = P [B]

10. Rice 1.76

Let Xt be the number of people at time t. As given, X0 = 1. If Xt > 0, then the number of
people in the queue could decrease by 1 (service a person in line and nobody joins queue),
increase by 1 (a person joins the queue but nobody is serviced), or could stay the same
(nobody serviced & nobody joins or one serviced & one joins).

Xt+1 =





Xt − 1 with probability p(1− q)

Xt + 1 with probability (1− p)q

Xt with probability pq + (1− p)(1− q)

If Xt = 0, then Xt+1 could only be 0 or 1, yielding

Xt+1 =

{
0 with probability 1− q

1 with probability q

Then

P [X1 = 0] = p(1− q)

P [X1 = 1] = pq + (1− p)(1− q)

P [X1 = 2] = q(1− p)

Then

P [X2 = 0] = (1− q)P [X1 = 0] + p(1− q)P [X1 = 1]

= p(1− q)2 + p(1− q)(pq + (1− p)(1− q))
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P [X2 = 1] = qP [X1 = 0] + (pq + (1− p)(1− q))P [X1 = 1] + p(1− q)P [X1 = 2]

= pq(1− q) + (pq + (1− p)(1− q))2 + pq(1− p)(1− q)

P [X2 = 2] = (1− p)qP [X1 = 1] + (pq + (1− p)(1− q))P [X1 = 2]

= (1− p)q(pq + (1− p)(1− q)) + (pq + (1− p)(1− q))q(1− p)

= 2(1− p)q(pq + (1− p)(1− q))

P [X2 = 3] = (1− p)qP [X1 = 2]

= (1− p)2q2

These probabilities could also be determined by constructing the tree structure for the two
time points and collecting the leaves corresponding to X2 = 0, 1, 2, and 3.

11. Rice 1.78

In what follows let F represent the genotype of the father and M represent the genotype of
the mother.

(a)

P [AA] = P [Aa parent transmits A] =
1

2

P [Aa] = P [Aa parent transmits a] =
1

2

(b)

P [AA] = P [AA|F = AA,M = AA]P [F = AA]P [M = AA]

+ P [AA|F = AA,M = Aa]P [F = AA]P [M = Aa]

+ P [AA|F = AA,M = aa]P [F = AA]P [M = aa]

+ P [AA|F = Aa,M = AA]P [F = Aa]P [M = AA]

+ P [AA|F = Aa,M = Aa]P [F = Aa]P [M = Aa]

+ P [AA|F = Aa,M = aa]P [F = Aa]P [M = aa]

+ P [AA|F = aa,M = AA]P [F = aa]P [M = AA]

+ P [AA|F = aa,M = Aa]P [F = aa]P [M = Aa]

+ P [AA|F = aa,M = aa]P [F = aa]P [M = aa]

= 1× p2 + 0.5× 2pq + 0× pr + 0.5× 2pq + 0.25× 4q2 + 0× 2qr

+ 0× pr + 0× 2qr + 0× r2

= p2 + 2pq + q2 = (p + q)2
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P [Aa] = P [Aa|F = AA,M = AA]P [F = AA]P [M = AA]

+ P [Aa|F = AA,M = Aa]P [F = AA]P [M = Aa]

+ P [Aa|F = AA,M = aa]P [F = AA]P [M = aa]

+ P [Aa|F = Aa,M = AA]P [F = Aa]P [M = AA]

+ P [Aa|F = Aa,M = Aa]P [F = Aa]P [M = Aa]

+ P [Aa|F = Aa,M = aa]P [F = Aa]P [M = aa]

+ P [Aa|F = aa,M = AA]P [F = aa]P [M = AA]

+ P [Aa|F = aa,M = Aa]P [F = aa]P [M = Aa]

+ P [Aa|F = aa,M = aa]P [F = aa]P [M = aa]

= 0× p2 + 0.5× 2pq + 1× pr + 0.5× 2pq + 0.5× 4q2 + 0.5× 2qr

+ 1× pr + 0.5× 2qr + 0× r2

= 2(pq + pr + qr + q2) = 2(p + q)(q + r)

P [aa] = P [aa|F = AA,M = AA]P [F = AA]P [M = AA]

+ P [aa|F = AA,M = Aa]P [F = AA]P [M = Aa]

+ P [aa|F = AA,M = aa]P [F = AA]P [M = aa]

+ P [aa|F = Aa,M = AA]P [F = Aa]P [M = AA]

+ P [aa|F = Aa,M = Aa]P [F = Aa]P [M = Aa]

+ P [aa|F = Aa,M = aa]P [F = Aa]P [M = aa]

+ P [aa|F = aa,M = AA]P [F = aa]P [M = AA]

+ P [aa|F = aa,M = Aa]P [F = aa]P [M = Aa]

+ P [aa|F = aa,M = aa]P [F = aa]P [M = aa]

= 0× p2 + 0× 2pq + 0× pr + 0× 2pq + 0.25× 4q2 + 0.5× 2qr

+ 0× pr + 0.5× 2qr + 1× r2

= q2 + 2qr + r2 = (q + r)2

Let x = p + q and y = q + r and note that x + y = 1. Then the probabilities defined
in the previous part satisfy P [AA] = x2, P [Aa] = 2xy, and P [aa] = y2. Following the
approach of the previous part using these probabilities for the parental genotypes, we
get for the third generation
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P [AA] = P [AA|F = AA,M = AA]P [F = AA]P [M = AA]

+ P [AA|F = AA,M = Aa]P [F = AA]P [M = Aa]

+ P [AA|F = AA,M = aa]P [F = AA]P [M = aa]

+ P [AA|F = Aa,M = AA]P [F = Aa]P [M = AA]

+ P [AA|F = Aa,M = Aa]P [F = Aa]P [M = Aa]

+ P [AA|F = Aa,M = aa]P [F = Aa]P [M = aa]

+ P [AA|F = aa,M = AA]P [F = aa]P [M = AA]

+ P [AA|F = aa,M = Aa]P [F = aa]P [M = Aa]

+ P [AA|F = aa,M = aa]P [F = aa]P [M = aa]

= 1× x4 + 0.5× 2x3y + 0× x2y2 + 0.5× 2x3y + 0.25× 4x2y2 + 0× 2xy3

+ 0× x2y2 + 0× 2xy3 + 0× y4

= x4 + 2x3y + x2y2 = x2(x2 + 2xy + y2) = x2(x + y)2 = x2 = (p + q)2

P [Aa] = P [Aa|F = AA,M = AA]P [F = AA]P [M = AA]

+ P [Aa|F = AA,M = Aa]P [F = AA]P [M = Aa]

+ P [Aa|F = AA,M = aa]P [F = AA]P [M = aa]

+ P [Aa|F = Aa,M = AA]P [F = Aa]P [M = AA]

+ P [Aa|F = Aa,M = Aa]P [F = Aa]P [M = Aa]

+ P [Aa|F = Aa,M = aa]P [F = Aa]P [M = aa]

+ P [Aa|F = aa,M = AA]P [F = aa]P [M = AA]

+ P [Aa|F = aa,M = Aa]P [F = aa]P [M = Aa]

+ P [Aa|F = aa,M = aa]P [F = aa]P [M = aa]

= 0× x4 + 0.5× 2x3y + 1× x2y2 + 0.5× 2x3y + 0.5× 4x2y2 + 0.5× 2xy3

+ 1× x2y2 + 0.5× 2xy3 + 0× y4

= 2(x3y + 2x2y2 + xy3) = 2xy(x2 + 2xy + y2) = 2xy(x + y)2 = 2xy = 2(p + q)(q + r)
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P [aa] = P [aa|F = AA,M = AA]P [F = AA]P [M = AA]

+ P [aa|F = AA,M = Aa]P [F = AA]P [M = Aa]

+ P [aa|F = AA,M = aa]P [F = AA]P [M = aa]

+ P [aa|F = Aa,M = AA]P [F = Aa]P [M = AA]

+ P [aa|F = Aa,M = Aa]P [F = Aa]P [M = Aa]

+ P [aa|F = Aa,M = aa]P [F = Aa]P [M = aa]

+ P [aa|F = aa,M = AA]P [F = aa]P [M = AA]

+ P [aa|F = aa,M = Aa]P [F = aa]P [M = Aa]

+ P [aa|F = aa,M = aa]P [F = aa]P [M = aa]

= 0× x4 + 0× 2x3y + 0× x2y2 + 0× 2x3y + 0.25× 4x2y2 + 0.5× 2xy3

+ 0× x2y2 + 0.5× 2xy3 + 1× y4

= x2y2 + 2xy3 + y4 = y2(x2 + 2xy + y2) = y2(x + y)2 = y2 = (q + r)2

(c) The approach for this is the same as for part (b), except that different probabilities are
needed for the parental genotypes. What is needed is

P [F = i| survived to mate] for i = AA,Aa, aa

(similarly for the mother’s genotype). For calculating the second generation genotype
probabilities we need

P [survived to mate] = pu + 2qv + rw = c

This gives

P [F = i| survived to mate] =





pu
c

i = AA
2qv
c

i = Aa
rw
c

i = aa

Then the second generation probabilities are given by

P [AA] =
1

c2

{
1× p2u2 + 0.5× 2pquv + 0× pruw + 0.5× 2pquv + 0.25× 4q2v2

+0× 2qrvw + 0× pruw + 0× 2qrvw + 0× r2w2
}

=
1

c2

{
p2u2 + 2pquv + q2v2

}
=

(
pu + qv

c

)2
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P [Aa] =
1

c2

{
0× p2u2 + 0.5× 2pquv + 1× pruw + 0.5× 2pquv + 0.5× 4q2v2

+0.5× 2qrvw + 1× pruw + 0.5× 2qrvw + 0× r2w2
}

=
1

c2

{
2(pquv + pruw + qrvw + q2v2)

}
= 2

(
pu + qv

c

)(
qv + rw

c

)

P [aa] =
1

c2

{
0× p2u2 + 0× 2pquv + 0× pruw + 0× 2pquv + 0.25× 4q2v2

+0.5× 2qrvw + 0× pruw + 0.5× 2qrvw + 1× r2w2
}

=
1

c2

{
q2v2 + 2qrvw + r2w2

}
=

(
qv + rw

c

)2

Similarly to getting the third generations in part (b), let x = pu+qv
c

and y = qv+rw
c

and
again note that x + y = 1. Based on this, the needed parental genotype probabilities
for the third generation calculations are

P [survived to mate] = x2u + 2xyv + y2w = d

P [F = i| survived to mate] =





x2u
d

i = AA
2xyv

d
i = Aa

y2w
d

i = aa

Then the third generation probabilities are given by

P [AA] =
1

d2

{
1× x4u2 + 0.5× 2x3yuv + 0× x2y2uw + 0.5× 2x3yuv + 0.25× 4x2y2v2

+0× 2xy3vw + 0× x2y2uw + 0× 2xy3vw + 0× y4w2
}

=
1

d2

{
x4u2 + 2x3yuv + x2y2v2

}
= x2

(
xu + yv

d

)2

P [Aa] =
1

d2

{
0× x4u2 + 0.5× 2x3yuv + 1× x2y2uw + 0.5× 2x3yuv + 0.5× 4x2y2v2

+0.5× 2xy3vw + 1× x2y2uw + 0.5× 2xy3vw + 0× y4w2
}

=
1

d2

{
2(x3yuv + x2y2uw + xy3vw + x2y2v2)

}
= 2xy

(
xu + yv

d

)(
xv + yw

d

)

10



P [aa] =
1

d2

{
0× x4u2 + 0× 2x3yuv + 0× x2y2uw + 0× 2x3yuv + 0.25× 4x2y2v2

+0.5× 2xy3vw + 0× x2y2uw + 0.5× 2xy3vw + 1× y4w2
}

=
1

d2

{
x2y2v2 + 2xy3vw + y4w2

}
= y2

(
xv + yw

d

)2

Note that these aren’t the same as the second generation probabilities. There is a drift
due differential survival rates for the different genotypes.

12.

P [A2|A1] =
P [A1 ∩ A2]

P [A1]

=
P [A1 ∩ A2|Female]P [Female] + P [A1 ∩ A1|male]P [male]

P [A1|Female]P [Female] + P [A1|male]P [male]

=
p2

f (1− α) + p2
mα

pf (1− α) + pmα

The desire result, P [A2|A1] > P [A1] holds since

P [A1 ∩ A2] = p2
f (1− α) + p2

mα > (pf (1− α) + pmα)2 = P [A1]
2

This inequality holds as

P [A1 ∪ A2]− P [A1]
2 = p2

f (1− α) + p2
mα− (pf (1− α) + pmα)2

= (pf − pm)2α(1− α) > 0

11


