1. Rice 3.46

$$
f_{X, Y}(x, y)=e^{-x-y} ; x \geq 0, y \geq 0
$$

Let $r=\sqrt{x^{2}+y^{2}}$ and $\theta=\arctan \frac{y}{x}$ for $0 \leq \theta<2 \pi$ and $r \geq 0$, then $x=r \cos \theta$ and $y=r \sin \theta$. Then

$$
J=\left[\begin{array}{cc}
\frac{x}{\sqrt{x^{2}+y^{2}}} & \frac{y}{\sqrt{x^{2}+y^{2}}} \\
\frac{-y}{x^{2}+y^{2}} & \frac{x}{x^{2}+y^{2}}
\end{array}\right]
$$

So

$$
|J|=\frac{x}{\sqrt{x^{2}+y^{2}}} \frac{x}{x^{2}+y^{2}}+\frac{y}{\sqrt{x^{2}+y^{2}}} \frac{y}{x^{2}+y^{2}}=\frac{1}{\sqrt{x^{2}+y^{2}}}=\frac{1}{r}
$$

Giving

$$
f_{R, \theta}(r, \theta)=r e^{-(r \cos \theta+r \sin \theta)} ; 0 \leq \theta<2 \pi, r \geq 0
$$

As $f(r, \theta)$ can not be expressed in a product of a function of r and another function of θ, R and θ are not independent.
2. Rice 3.54

Let $U=X+Y$ and $V=\frac{X}{Y}$, then $Y=\frac{U}{V+1}$ and $X=\frac{U V}{V+1}$.

$$
J=\left[\begin{array}{cc}
1 & 1 \\
\frac{1}{y} & \frac{-x}{y^{2}}
\end{array}\right]
$$

Then

$$
|J|=\frac{1}{y}+\frac{x}{y^{2}}=\frac{x+y}{y^{2}}=\frac{u}{u^{2} /(v+1)^{2}}=\frac{(v+1)^{2}}{u}
$$

So

$$
\begin{aligned}
f_{U, V}(u, v) & =\lambda^{2} e^{-\lambda u v /(v+1)} e^{-\lambda u / v+1} \frac{u}{(v+1)^{2}} \\
& =\left(\lambda^{2} u e^{-\lambda u}\right)\left(\frac{1}{(v+1)^{2}}\right)
\end{aligned}
$$

for $u \geq 0, v \geq 0$. So U and V are independent.
3. Rice 3.55

Let X_{i} be the life time for the ith component, then $X_{i} \sim \operatorname{Exp}\left(\lambda_{i}\right)$. Because of series connection, the system will only work when every component is works, so the life time of the system $Y=\min \left(X_{1}, \ldots, X_{n}\right)$

$$
\begin{aligned}
P(Y>y) & =\prod_{i=1}^{n} P\left[X_{i}>y\right]=\prod_{i=1}^{n}\left(e^{-\lambda_{i} y}\right) \\
& =e^{\left(\Sigma_{i=1}^{n} \lambda_{i}\right) y}, y \geq 0
\end{aligned}
$$

So

$$
f_{Y}(y)=\left(\sum_{i=1}^{n} \lambda_{i}\right) e^{\left(\Sigma_{i=1}^{n} \lambda_{i}\right) y} ; y \geq 0
$$

implying the life time of the system is exponential with parameter $\sum_{i=1}^{n} \lambda_{i}$.
4. Rice 3.56

Let Y_{i} be the lifetime for each parallel line. From the result in 3.55 above, we know that $Y_{i} \sim \operatorname{Exp}(2 \lambda), i=1,2,3$. Let Z is the lifetime for the system. Because of parallel connection, $Z=\max \left(Y_{1}, Y_{2}, Y_{3}\right)$ since the system will work as long as one line is working. So

$$
\begin{gathered}
P[Z \leq z]=\prod_{i=1}^{3} P\left[Y_{i} \leq z\right]=\left(1-e^{-2 \lambda z}\right)^{3} ; z \geq 0 \\
f_{Z}(z)=6 \lambda e^{-2 \lambda z}\left(1-e^{-2 \lambda z}\right)^{2} ; z \geq 0
\end{gathered}
$$

5. Rice 3.60

$$
P\left[0.25 \leq X_{i} \leq 0.75\right]=\frac{1}{2}
$$

so

$$
P\left[\text { All } 0.25 \leq X_{i} \leq 0.75\right]=\left(\frac{1}{2}\right)^{5}=\frac{1}{32}
$$

6. Rice 4.17

Since

$$
\begin{aligned}
f_{X_{(k)}}(x) & =\frac{n!}{(k-1)!(n-k)!} f(x)[F(x)]^{k-1}[1-F(x)]^{n-k} \\
& =\frac{n!}{(k-1)!(n-k)!} x^{k-1}(1-x)^{n-k}
\end{aligned}
$$

So

$$
\begin{aligned}
E\left[X_{(k)}\right] & =\int_{0}^{1} \frac{n!}{(k-1)!(n-k)!} x^{k}(1-x)^{n-k} d x \\
& =\int_{0}^{1} \frac{n!}{(k-1)!(n-k)!} \frac{\Gamma(k+1) \Gamma(n-k+1)}{\Gamma(n+2)} \\
& =\frac{k}{n+1} \\
E\left[\left(X_{(k)}\right)^{2}\right] & =\int_{0}^{1} \frac{n!}{(k-1)!(n-k)!} x^{k+1}(1-x)^{n-k} d x \\
& =\int_{0}^{1} \frac{n!}{(k-1)!(n-k)!} \frac{\Gamma(k+2) \Gamma(n-k+1)}{\Gamma(n+3)} \\
& =\frac{k(k+1)}{(n+1)(n+2)}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Var}\left(X_{(k)}\right) & =\frac{k(k+1)}{(n+1)(n+2)}-\left(\frac{k}{n+1}\right)^{2} \\
& =\frac{k(n+1-k)}{(n+1)^{2}(n+2)}
\end{aligned}
$$

Another approach is to notice that the density is that of a $\operatorname{Beta}(k, n-k+1)$ distribution, which has the moments given above.
7. Rice 4.45
(a)

$$
E[Z]=E[\alpha X+(1-\alpha) Y]=\alpha E[X]+(1-\alpha) E[Y]=\mu
$$

(b)

$$
\begin{aligned}
\operatorname{Var}(Z) & =\operatorname{Var}(\alpha X+(1-\alpha) Y)=\operatorname{Var}(\alpha X)+\operatorname{Var}((1-\alpha) Y) \\
& =\alpha^{2} \operatorname{Var}(X)+(1-\alpha)^{2} \operatorname{Var}(Y) \\
& =\alpha^{2} \sigma_{X}^{2}+(1-\alpha)^{2} \sigma_{Y}^{2}
\end{aligned}
$$

This is minimized by $\alpha=\frac{\sigma_{y}^{2}}{\sigma_{x}^{2}+\sigma_{y}^{2}}$ as

$$
\frac{d}{d \alpha} \operatorname{Var}(Z)=2 \alpha \sigma_{x}^{2}-2(1-\alpha) \sigma_{y}^{2}=2 \alpha\left(\sigma_{x}^{2}+\sigma_{y}^{2}\right)-2 \sigma_{y}^{2}
$$

(c)

$$
\operatorname{Var}\left(\frac{X+Y}{2}\right)=\frac{\sigma_{x}^{2}+\sigma_{y}^{2}}{4} \leq \sigma_{x}^{2} \text { if } \sigma_{y}^{2} \leq 3 \sigma_{x}^{2}
$$

Similarly $\operatorname{Var}\left(\frac{X+Y}{2}\right) \leq \sigma_{y}^{2}$ if $\sigma_{x} \leq 3 \sigma_{y}^{2}$.
So it is better to use $\frac{X+Y}{2}$ when $\frac{1}{3} \leq \frac{\sigma_{y}^{2}}{\sigma_{x}^{2}} \leq 3$.
8. Rice 4.48

$$
\begin{aligned}
\operatorname{Cov}(U, V) & =\operatorname{Cov}(Z+X, Z+Y)=\operatorname{Cov}(Z, Z)+\operatorname{Cov}(X, Z)+\operatorname{Cov}(Z, Y)+\operatorname{Cov}(X, Y) \\
& =\operatorname{Var}(Z)=\sigma_{Z}^{2}
\end{aligned}
$$

Next,

$$
\operatorname{Var}(U)=\operatorname{Var}(Z+X)=\operatorname{Var}(Z)+\operatorname{Var}(X)=\sigma_{Z}^{2}+\sigma_{X}^{2}
$$

Similarly, $\operatorname{Var}(V)=\sigma_{Z}^{2}+\sigma_{Y}^{2}$. So

$$
\rho_{U, V}=\frac{\sigma_{Z}^{2}}{\sqrt{\left(\sigma_{X}^{2}+\sigma_{Z}^{2}\right)\left(\sigma_{Z}^{2}+\sigma_{Y}^{2}\right)}}
$$

9. Rice 4.49

$$
\begin{aligned}
E[T] & =\sum_{k=1}^{n} k E\left[X_{k}\right]=\sum_{k=1}^{n} k \mu=\mu \sum_{k=1}^{n} k \\
& =\mu \frac{n(n+1)}{2} \\
\operatorname{Var}(T) & =\sum_{k=1}^{n} k^{2} \operatorname{Var}\left(X_{k}\right)=\sum_{k=1}^{n} k^{2} \sigma^{2}=\sigma^{2} \sum_{k=1}^{n} k^{2} \\
& =\sigma^{2} \frac{n(n+1)(2 n+1)}{6}
\end{aligned}
$$

10. Rice 4.50

$$
\operatorname{Var}(S)=\sum_{k=1}^{n} \operatorname{Var}\left(X_{k}\right)=n \sigma^{2}
$$

$$
\begin{aligned}
\operatorname{Cov}(S, T) & =\sum_{j=1}^{n} \sum_{k=1}^{n} \operatorname{Cov}\left(X_{j}, k X_{k}\right) \\
& =\sum_{k=1}^{n} k \operatorname{Var}\left(X_{k}\right) \\
& =\sigma^{2} \frac{n(n+1)}{2} \\
\rho_{S, T} & =\frac{\operatorname{Cov}(S, T)}{\sqrt{\operatorname{Var}(S) \operatorname{Var}(T)}} \\
& =\frac{\sigma^{2} \frac{n(n+1)}{2}}{\sqrt{\sigma^{2} n \times \sigma^{2} \frac{n(n+1)(2 n+1)}{6}}} \\
& =\sqrt{\frac{3(n+1)}{2(2 n+1)}}
\end{aligned}
$$

11.

$$
\begin{aligned}
E[X Y] & =\int_{0}^{\infty}\left[\int_{0}^{x} x y \frac{2 e^{-2 x}}{x} d y\right] d x \\
& =\int_{0}^{\infty}\left[\left.y^{2} e^{-2 x}\right|_{0} ^{x}\right] d x \\
& =\int_{0}^{\infty} x^{2} e^{-2 x} d x \\
& =\int_{0}^{\infty} \frac{(2 x)^{2} e^{-2 x}}{8} d(2 x) \\
& =\frac{1}{4}
\end{aligned}
$$

and

$$
\begin{aligned}
E[X] & =\int_{0}^{\infty}\left[\int_{0}^{x} 2 e^{-2 x} d y\right] d x \\
& =\int_{0}^{\infty} 2 x e^{-2 x} d x=\frac{1}{2} \\
E[Y] & =\int_{0}^{\infty}\left[\int_{0}^{x} \frac{2 y e^{-2 x}}{x} d y\right] d x \\
& =\int_{0}^{\infty} x e^{-2 x} d x=\frac{1}{4}
\end{aligned}
$$

Since $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]$, then

$$
\operatorname{Cov}(X, Y)=\frac{1}{4}-\frac{1}{2} \frac{1}{4}=\frac{1}{8}
$$

Suggested Problems

1. Rice 3.48

If (X_{1}, X_{2}) are bivariate normal, they have a density of the form

$$
\begin{gathered}
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \exp \left(-\frac{1}{2\left(1-\rho^{2}\right)}\left[\frac{\left(x_{1}-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}\right.\right. \\
\left.\left.+\frac{\left(x_{2}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}-\frac{2 \rho\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)}{\sigma_{1} \sigma_{1}}\right]\right) \\
y_{1}=g_{1}\left(x_{1}, x_{2}\right)=a_{1} x_{1}+b_{1} \quad \Rightarrow \quad \begin{array}{l}
x_{1}=h_{1}\left(y_{1}, y_{2}\right)=\frac{y_{1}-b_{1}}{a_{1}} \\
y_{2}=g_{2}\left(x_{1}, x_{2}\right)=h_{2} x_{2}\left(y_{1}, y_{2}\right)=\frac{y_{2}-b_{2}}{a_{2}} \\
J=\left[\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right] \quad|J|=a_{1} a_{2}
\end{array}
\end{gathered}
$$

Then

$$
\begin{aligned}
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)= & f_{X_{1}, X_{2}}\left(\frac{y_{1}-b_{1}}{a_{1}}, \frac{y_{2}-b_{2}}{a_{2}}\right) \frac{1}{J} \\
= & \frac{1}{2 \pi a_{1} \sigma_{1} a_{2} \sigma_{2} \sqrt{1-\rho^{2}}} \exp \left(-\frac{1}{2\left(1-\rho^{2}\right)}\left[\frac{\left(\frac{y_{1}-b_{1}}{a_{1}}-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}\right.\right. \\
& \left.\left.\quad+\frac{\left(\frac{y_{2}-b_{2}}{a_{2}}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}-\frac{2 \rho\left(\frac{y_{1}-b_{1}}{a_{1}}-\mu_{1}\right)\left(\frac{y_{2}-b_{2}}{a_{2}}-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}\right]\right) \\
= & \frac{1}{2 \pi a_{1} \sigma_{1} a_{2} \sigma_{2} \sqrt{1-\rho^{2}}} \exp \left(-\frac{1}{2\left(1-\rho^{2}\right)}\left[\frac{\left(y_{1}-a_{1} \mu_{1}-b_{1}\right)^{2}}{\left(a_{1} \sigma_{1}\right)^{2}}\right.\right. \\
& \left.\left.\quad+\frac{\left(y_{2}-a_{2} \mu_{2}-b_{2}\right)^{2}}{\left(a_{2} \sigma_{2}\right)^{2}}-\frac{2 \rho\left(x_{1}-a_{1} \mu_{1}-b_{1}\right)\left(x_{2}-a_{2} \mu_{2}-b_{2}\right)}{a_{1} \sigma_{1} a_{2} \sigma_{2}}\right]\right)
\end{aligned}
$$

which is a bivariate normal density with means $a_{1} \mu_{1}+b_{1}$ and $a_{2} \mu_{2}+b_{2}$, variances $\left(a_{1} \sigma_{1}\right)^{2}$ and $\left(a_{2} \sigma_{2}\right)^{2}$, and correlation ρ.
2. Rice 3.50

In problem 3.49, part of the answer was to show that

$$
\begin{aligned}
E\left[Y_{1}\right] & =a_{11} E\left[X_{1}\right]+a_{12} E\left[X_{2}\right]+b_{1}=b_{1}=\mu_{1} \\
E\left[Y_{2}\right] & =a_{21} E\left[X_{1}\right]+a_{22} E\left[X_{2}\right]+b_{2}=b_{2}=\mu_{2} \\
\operatorname{Var}\left(Y_{1}\right) & =a_{11}^{2} \operatorname{Var}\left(X_{1}\right)+a_{12} \operatorname{Var}\left(X_{2}\right)=a_{11}^{2}+a_{12}^{2}=\sigma_{1}^{2} \\
\operatorname{Var}\left(Y_{2}\right) & =a_{21}^{2} \operatorname{Var}\left(X_{1}\right)+a_{22} \operatorname{Var}\left(X_{2}\right)=a_{21}^{2}+a_{22}^{2}=\sigma_{2}^{2} \\
\operatorname{Cov}\left(Y_{1}, Y_{2}\right) & =a_{11} a_{21} \operatorname{Var}\left(X_{1}\right)+a_{12} a_{22} \operatorname{Var}\left(X_{2}\right)=a_{11} a_{21}+a_{12} a_{22}=\rho \sigma_{1} \sigma_{2} \\
\operatorname{Corr}\left(Y_{1}, Y_{2}\right) & =\frac{a_{11} a_{21}+a_{12} a_{22}}{\sqrt{\left(a_{11}^{2}+a_{12}^{2}\right)\left(a_{21}^{2}+a_{22}^{2}\right)}}=\rho
\end{aligned}
$$

So to generate a bivariate normal with means μ_{1} and μ_{2}, variances σ_{1}^{2} and σ_{2}^{2}, and correlation ρ, you would need to pick values $a_{11}, a_{12}, a_{21}, a_{22}, b_{1}, b_{2}$ that yield the desired values. This can be done in many ways (since there are 5 values and 6 unknowns). One possible way is by

$$
\begin{aligned}
b_{1} & =\mu_{1} \\
b_{2} & =\mu_{2} \\
a_{11} & =\sigma_{1} \\
a_{12} & =0 \\
a_{21} & =\rho \sigma_{2} \\
a_{22} & =\sigma_{2} \sqrt{1-\rho^{2}}
\end{aligned}
$$

3. Rice 3.59

As discussed in class, the density of the minimum n iid RVs with density $f_{T}(t)$ is given by

$$
n f_{T}(v)\left[1-F_{T}(v)\right]^{n-1}
$$

For the given Weibull density, the CDF is

$$
F_{T}(t)=1-e^{-(t / \alpha)^{\beta}}
$$

So plugging into the formula gives

$$
\begin{aligned}
f_{V}(v) & =\frac{n \beta}{\alpha^{\beta}} v^{\beta-1} e^{-(v / \alpha)^{\beta}}\left(e^{-(v / \alpha)^{\beta}}\right)^{n-1} \\
& =\frac{n \beta}{\alpha^{\beta}} v^{\beta-1} e^{-(v / \alpha)^{n \beta}}
\end{aligned}
$$

4. Rice 4.52
(a)

$$
\begin{aligned}
E[Z] & =\frac{1}{h}\left(E\left[f(x+h)+\epsilon_{2}\right]-E\left[f(x)+\epsilon_{1}\right]\right) \\
& =\frac{f(x+h)-f(x)}{h}+\frac{1}{h}\left(E\left[\epsilon_{2}\right]-E\left[\epsilon_{1}\right]\right) \\
& =\frac{f(x+h)-f(x)}{h}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}(Z) & =\frac{1}{h^{2}}\left(\operatorname{Var}\left(f(x+h)+\epsilon_{2}\right)+\operatorname{Var}\left(f(x)+\epsilon_{1}\right)\right) \\
& =\frac{1}{h^{2}}\left(\operatorname{Var}\left(\epsilon_{2}\right)+\operatorname{Var}\left(\epsilon_{1}\right)\right) \\
& =\frac{2 \sigma^{2}}{h^{2}}
\end{aligned}
$$

As $h \rightarrow 0, E[Z] \rightarrow f^{\prime}(x)$ but $\operatorname{Var}(Z) \rightarrow \infty$.
(b)

$$
\begin{aligned}
M S E_{h}(Z) & =E\left[\left(Z-f^{\prime}(x)\right)^{2}\right] \\
& =\operatorname{Var}(Z)+\left(E[Z]-f^{\prime}(x)\right)^{2} \\
& =\frac{2 \sigma^{2}}{h^{2}}+\left(\frac{f(x+h)-f(x)}{h}-f^{\prime}(x)\right)^{2} \\
& \approx \frac{2 \sigma^{2}}{h^{2}}+\left(\frac{f(x)+f^{\prime}(x) h+\frac{1}{2} f^{\prime \prime}(x) h^{2}-f(x)}{h}-f^{\prime}(x)\right)^{2} \\
& =\frac{2 \sigma^{2}}{h^{2}}+\left(\frac{f^{\prime}(x) h+\frac{1}{2} f^{\prime \prime}(x) h^{2}}{h}-f^{\prime}(x)\right)^{2} \\
& =\frac{2 \sigma^{2}}{h^{2}}+\frac{1}{4}\left(f^{\prime \prime}(x)\right)^{2} h^{2} \\
& \frac{d}{d h} M S E_{h}(Z) \approx \frac{-\sigma^{2}}{h^{3}}+\frac{1}{2}\left(f^{\prime \prime}(x)\right)^{2} h
\end{aligned}
$$

Setting this to 0 and solving for h gives

$$
h_{o p t}=\left(\frac{2 \sigma^{2}}{\left(f^{\prime \prime}(x)\right)^{2}}\right)^{1 / 4}
$$

(c) Let the 3 measured points be

$$
\begin{aligned}
& X_{1}=f(x-h)+\epsilon_{1} \\
& X_{2}=f(x)+\epsilon_{2} \\
& X_{3}=f(x+h)+\epsilon_{3}
\end{aligned}
$$

Then $f^{\prime \prime}(x)$ can be estimated by

$$
U=\frac{X_{3}-2 X_{2}+X_{1}}{h^{2}}
$$

Then

$$
\begin{aligned}
E[U] & =\frac{1}{h^{2}} E\left[f(x+h)+\epsilon_{3}\right]-2 E\left[f(x)+\epsilon_{2}\right]+E\left[f(x-h)+\epsilon_{1}\right] \\
& =\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}} \\
\operatorname{Var}(U) & =\frac{1}{h^{4}} \operatorname{Var}\left(f(x+h)+\epsilon_{3}\right)-4 \operatorname{Var}\left(f(x)+\epsilon_{2}\right)+\operatorname{Var}\left(f(x-h)+\epsilon_{1}\right) \\
& =\frac{\sigma^{2}+4 \sigma^{2}+\sigma^{2}}{h^{4}}=\frac{6 \sigma^{2}}{h^{4}}
\end{aligned}
$$

To get a handle on the bias (not required in the problem), note

$$
\begin{aligned}
& f(x+h) \approx f(x)+f^{\prime}(x) h+\frac{1}{2} f^{\prime \prime}(x) h^{2}+\frac{1}{6} f^{\prime \prime \prime}(x) h^{3}+\frac{1}{24} f^{(4)}(x) h^{4} \\
& f(x-h) \approx f(x)-f^{\prime}(x) h+\frac{1}{2} f^{\prime \prime}(x) h^{2}-\frac{1}{6} f^{\prime \prime \prime}(x) h^{3}+\frac{1}{24} f^{(4)}(x) h^{4}
\end{aligned}
$$

Then the bias of this estimate is given by

$$
\begin{aligned}
\operatorname{Bias}(U) & =\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}-f^{\prime \prime}(x) \\
& \approx \frac{\frac{1}{12} f^{(4)}(x) h^{4}}{h^{2}} \\
& =\frac{1}{12} f^{(4)}(x) h^{2}
\end{aligned}
$$

The optimal choose of h for this problem is

$$
h_{o p t}=\left(\frac{144 \sigma^{2}}{f^{(4)}(x)}\right)^{1 / 6}
$$

5. Rice 4.53

$$
\begin{aligned}
E[X] & =\int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} x d x d y \\
& =\left.\int_{-1}^{1} x^{2}\right|_{-\sqrt{1-y^{2}}} ^{\sqrt{1-y^{2}}} d y \\
& =\int_{-1}^{1} 0 d y \\
& =0
\end{aligned}
$$

Note that this is similar to $E[X]=E[E[X \mid Y]]$ approach. If the order of integration is switched, it is more difficult.

$$
\begin{aligned}
E[X] & =\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} x d y d x \\
& =\left.\int_{-1}^{1} x y\right|_{-\sqrt{1-x^{2}}} ^{\sqrt{1-2}} \\
& =\int_{-1}^{1} 2 x \sqrt{1-x^{2}} d x \\
& =0
\end{aligned}
$$

If you were to use the $E[E[X \mid Y]]$ approach, note that

$$
f_{X \mid Y}(x, y)=2 \sqrt{1-y^{2}} ; \quad-\sqrt{1-y^{2}} \leq x \leq \sqrt{1-y^{2}}
$$

which implies $E[X \mid Y=y]=0$ for all y. Also note, that since this density depends on y, X and Y are not independent.
By symmetry, $E[Y]=0$. This implies that

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E[X Y]-E[X] E[Y] \\
& =E[X Y] \\
& =\int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} x y d x d y \\
& =\int_{-1}^{1} y\left(\left.x^{2}\right|_{-\sqrt{1-y^{2}}} ^{\sqrt{1-y^{2}}}\right) d y \\
& =\int_{-1}^{1} y \times 0 d y \\
& =0
\end{aligned}
$$

This can also be calculated by the iterated expectation approach as

$$
\begin{aligned}
E[X Y] & =E[E[X Y \mid Y]] \\
& =E[Y E[X \mid Y]] \\
& =E[Y \times 0] \\
& =0
\end{aligned}
$$

