
Statistics 110 – Assignment 4 Solutions Summer, 2006

1. Rice 3.46

fX,Y (x, y) = e−x−y; x ≥ 0, y ≥ 0.

Let r =
√

x2 + y2 and θ = arctan y
x

for 0 ≤ θ < 2π and r ≥ 0, then x = r cos θ and
y = r sin θ. Then

J =




x√
x2+y2

y√
x2+y2

−y
x2+y2

x
x2+y2




So

|J | = x√
x2 + y2

x

x2 + y2
+

y√
x2 + y2

y

x2 + y2
=

1√
x2 + y2

=
1

r

Giving

fR,θ(r, θ) = re−(r cos θ+r sin θ); 0 ≤ θ < 2π, r ≥ 0.

As f(r, θ) can not be expressed in a product of a function of r and another function of θ, R
and θ are not independent.

2. Rice 3.54

Let U = X + Y and V = X
Y

, then Y = U
V +1

and X = UV
V +1

.

J =

[
1 1
1
y

−x
y2

]

Then

|J | = 1

y
+

x

y2
=

x + y

y2
=

u

u2/(v + 1)2
=

(v + 1)2

u

So

fU,V (u, v) = λ2e−λuv/(v+1)e−λu/v+1 u

(v + 1)2

=
(
λ2ue−λu

) (
1

(v + 1)2

)

for u ≥ 0, v ≥ 0. So U and V are independent.
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3. Rice 3.55

Let Xi be the life time for the ith component, then Xi ∼ Exp(λi). Because of series
connection, the system will only work when every component is works, so the life time of
the system Y = min(X1, . . . , Xn)

P (Y > y) =
n∏

i=1

P [Xi > y] =
n∏

i=1

(e−λiy)

= e(Σn
i=1λi)y, y ≥ 0

So
fY (y) = (Σn

i=1λi)e
(Σn

i=1λi)y; y ≥ 0

implying the life time of the system is exponential with parameter Σn
i=1λi.

4. Rice 3.56

Let Yi be the lifetime for each parallel line. From the result in 3.55 above, we know that
Yi ∼ Exp(2λ), i = 1, 2, 3. Let Z is the lifetime for the system. Because of parallel connection,
Z = max(Y1, Y2, Y3) since the system will work as long as one line is working. So

P [Z ≤ z] =
3∏

i=1

P [Yi ≤ z] = (1− e−2λz)3; z ≥ 0

fZ(z) = 6λe−2λz(1− e−2λz)2; z ≥ 0.

5. Rice 3.60

P [0.25 ≤ Xi ≤ 0.75] =
1

2

so

P [All 0.25 ≤ Xi ≤ 0.75] =

(
1

2

)5

=
1

32

6. Rice 4.17

Since

fX(k)
(x) =

n!

(k − 1)!(n− k)!
f(x)[F (x)]k−1[1− F (x)]n−k

=
n!

(k − 1)!(n− k)!
xk−1(1− x)n−k

2



So

E[X(k)] =

∫ 1

0

n!

(k − 1)!(n− k)!
xk(1− x)n−kdx

=

∫ 1

0

n!

(k − 1)!(n− k)!

Γ(k + 1)Γ(n− k + 1)

Γ(n + 2)

=
k

n + 1

E[(X(k))
2] =

∫ 1

0

n!

(k − 1)!(n− k)!
xk+1(1− x)n−kdx

=

∫ 1

0

n!

(k − 1)!(n− k)!

Γ(k + 2)Γ(n− k + 1)

Γ(n + 3)

=
k(k + 1)

(n + 1)(n + 2)

and

Var(X(k)) =
k(k + 1)

(n + 1)(n + 2)
−

(
k

n + 1

)2

=
k(n + 1− k)

(n + 1)2(n + 2)

Another approach is to notice that the density is that of a Beta(k, n− k + 1) distribution,
which has the moments given above.

7. Rice 4.45

(a)
E[Z] = E[αX + (1− α)Y ] = αE[X] + (1− α)E[Y ] = µ

(b)

Var(Z) = Var(αX + (1− α)Y ) = Var(αX) + Var((1− α)Y )

= α2Var(X) + (1− α)2Var(Y )

= α2σ2
X + (1− α)2σ2

Y

This is minimized by α =
σ2

y

σ2
x+σ2

y
as

d

dα
Var(Z) = 2ασ2

x − 2(1− α)σ2
y = 2α(σ2

x + σ2
y)− 2σ2

y
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(c)

Var

(
X + Y

2

)
=

σ2
x + σ2

y

4
≤ σ2

x if σ2
y ≤ 3σ2

x.

Similarly Var(X+Y
2

) ≤ σ2
y if σx ≤ 3σ2

y.

So it is better to use X+Y
2

when 1
3
≤ σ2

y

σ2
x
≤ 3.

8. Rice 4.48

Cov(U, V ) = Cov(Z + X, Z + Y ) = Cov(Z,Z) + Cov(X,Z) + Cov(Z, Y ) + Cov(X,Y )

= Var(Z) = σ2
Z

Next,

Var(U) = Var(Z + X) = Var(Z) + Var(X) = σ2
Z + σ2

X

Similarly, Var(V ) = σ2
Z + σ2

Y . So

ρU,V =
σ2

Z√
(σ2

X + σ2
Z)(σ2

Z + σ2
Y )

9. Rice 4.49

E[T ] =
n∑

k=1

kE[Xk] =
n∑

k=1

kµ = µ

n∑

k=1

k

= µ
n(n + 1)

2

Var(T ) =
n∑

k=1

k2Var(Xk) =
n∑

k=1

k2σ2 = σ2

n∑

k=1

k2

= σ2n(n + 1)(2n + 1)
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10. Rice 4.50

Var(S) =
n∑

k=1

Var(Xk) = nσ2
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Cov(S, T ) =
n∑

j=1

n∑

k=1

Cov(Xj, kXk)

=
n∑

k=1

kVar(Xk)

= σ2n(n + 1)

2

ρS,T =
Cov(S, T )√

Var(S)Var(T )

=
σ2 n(n+1)

2√
σ2n× σ2 n(n+1)(2n+1)

6

=

√
3(n + 1)

2(2n + 1)

11.

E[XY ] =

∫ ∞

0

[∫ x

0

xy
2e−2x

x
dy

]
dx

=

∫ ∞

0

[
y2e−2x

∣∣x
0

]
dx

=

∫ ∞

0

x2e−2xdx

=

∫ ∞

0

(2x)2e−2x

8
d(2x)

=
1

4
,

and

E[X] =

∫ ∞

0

[∫ x

0

2e−2xdy

]
dx

=

∫ ∞

0

2xe−2xdx =
1

2

E[Y ] =

∫ ∞

0

[∫ x

0

2ye−2x

x
dy

]
dx

=

∫ ∞

0

xe−2xdx =
1

4
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Since Cov(X,Y ) = E[XY ]− E[X]E[Y ], then

Cov(X,Y ) =
1

4
− 1

2

1

4
=

1

8

Suggested Problems

1. Rice 3.48

If (X1, X2) are bivariate normal, they have a density of the form

fX1,X2(x1, x2) =
1

2πσ1σ2

√
1− ρ2

exp

(
− 1

2(1− ρ2)

[
(x1 − µ1)

2

σ2
1

+
(x2 − µ2)

2

σ2
2

− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ1

])

y1 = g1(x1, x2) = a1x1 + b1

y2 = g2(x1, x2) = a2x2 + b2

⇒ x1 = h1(y1, y2) = y1−b1
a1

x2 = h2(y1, y2) = y2−b2
a2

J =

[
a1 0

0 a2

]
|J | = a1a2

Then

fY1,Y2(y1, y2) = fX1,X2

(
y1 − b1

a1

,
y2 − b2

a2

)
1

J

=
1

2πa1σ1a2σ2

√
1− ρ2

exp

(
− 1

2(1− ρ2)

[
(y1−b1

a1
− µ1)

2

σ2
1

+
(y2−b2

a2
− µ2)

2

σ2
2

− 2ρ(y1−b1
a1

− µ1)(
y2−b2

a2
− µ2)

σ1σ2

])

=
1

2πa1σ1a2σ2

√
1− ρ2

exp

(
− 1

2(1− ρ2)

[
(y1 − a1µ1 − b1)

2

(a1σ1)2

+
(y2 − a2µ2 − b2)

2

(a2σ2)2
− 2ρ(x1 − a1µ1 − b1)(x2 − a2µ2 − b2)

a1σ1a2σ2

])

which is a bivariate normal density with means a1µ1 + b1 and a2µ2 + b2, variances (a1σ1)
2

and (a2σ2)
2, and correlation ρ.
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2. Rice 3.50

In problem 3.49, part of the answer was to show that

E[Y1] = a11E[X1] + a12E[X2] + b1 = b1 = µ1

E[Y2] = a21E[X1] + a22E[X2] + b2 = b2 = µ2

Var(Y1) = a2
11Var(X1) + a12Var(X2) = a2

11 + a2
12 = σ2

1

Var(Y2) = a2
21Var(X1) + a22Var(X2) = a2

21 + a2
22 = σ2

2

Cov(Y1, Y2) = a11a21Var(X1) + a12a22Var(X2) = a11a21 + a12a22 = ρσ1σ2

Corr(Y1, Y2) =
a11a21 + a12a22√

(a2
11 + a2

12)(a
2
21 + a2

22)
= ρ

So to generate a bivariate normal with means µ1 and µ2, variances σ2
1 and σ2

2, and correlation
ρ, you would need to pick values a11, a12, a21, a22, b1, b2 that yield the desired values. This
can be done in many ways (since there are 5 values and 6 unknowns). One possible way is
by

b1 = µ1

b2 = µ2

a11 = σ1

a12 = 0

a21 = ρσ2

a22 = σ2

√
1− ρ2

3. Rice 3.59

As discussed in class, the density of the minimum n iid RVs with density fT (t) is given by

nfT (v)[1− FT (v)]n−1

For the given Weibull density, the CDF is

FT (t) = 1− e−(t/α)β

So plugging into the formula gives

fV (v) =
nβ

αβ
vβ−1e−(v/α)β

(
e−(v/α)β

)n−1

=
nβ

αβ
vβ−1e−(v/α)nβ
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4. Rice 4.52

(a)

E[Z] =
1

h
(E[f(x + h) + ε2]− E[f(x) + ε1])

=
f(x + h)− f(x)

h
+

1

h
(E[ε2]− E[ε1])

=
f(x + h)− f(x)

h

Var(Z) =
1

h2
(Var(f(x + h) + ε2) + Var(f(x) + ε1))

=
1

h2
(Var(ε2) + Var(ε1))

=
2σ2

h2

As h → 0, E[Z] → f ′(x) but Var(Z) →∞.

(b)

MSEh(Z) = E[(Z − f ′(x))2]

= Var(Z) + (E[Z]− f ′(x))2

=
2σ2

h2
+

(
f(x + h)− f(x)

h
− f ′(x)

)2

≈ 2σ2

h2
+

(
f(x) + f ′(x)h + 1

2
f ′′(x)h2 − f(x)

h
− f ′(x)

)2

=
2σ2

h2
+

(
f ′(x)h + 1

2
f ′′(x)h2

h
− f ′(x)

)2

=
2σ2

h2
+

1

4
(f ′′(x))2h2

d

dh
MSEh(Z) ≈ −σ2

h3
+

1

2
(f ′′(x))2h

Setting this to 0 and solving for h gives

hopt =

(
2σ2

(f ′′(x))2

)1/4
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(c) Let the 3 measured points be

X1 = f(x− h) + ε1

X2 = f(x) + ε2

X3 = f(x + h) + ε3

Then f ′′(x) can be estimated by

U =
X3 − 2X2 + X1

h2

Then

E[U ] =
1

h2
E[f(x + h) + ε3]− 2E[f(x) + ε2] + E[f(x− h) + ε1]

=
f(x + h)− 2f(x) + f(x− h)

h2

Var(U) =
1

h4
Var(f(x + h) + ε3)− 4Var(f(x) + ε2) + Var(f(x− h) + ε1)

=
σ2 + 4σ2 + σ2

h4
=

6σ2

h4

To get a handle on the bias (not required in the problem), note

f(x + h) ≈ f(x) + f ′(x)h +
1

2
f ′′(x)h2 +

1

6
f ′′′(x)h3 +

1

24
f (4)(x)h4

f(x− h) ≈ f(x)− f ′(x)h +
1

2
f ′′(x)h2 − 1

6
f ′′′(x)h3 +

1

24
f (4)(x)h4

Then the bias of this estimate is given by

Bias(U) =
f(x + h)− 2f(x) + f(x− h)

h2
− f ′′(x)

≈
1
12

f (4)(x)h4

h2

=
1

12
f (4)(x)h2

The optimal choose of h for this problem is

hopt =

(
144σ2

f (4)(x)

)1/6
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5. Rice 4.53

E[X] =

∫ 1

−1

∫ √
1−y2

−
√

1−y2

xdxdy

=

∫ 1

−1

x2
∣∣
√

1−y2

−
√

1−y2
dy

=

∫ 1

−1

0dy

= 0

Note that this is similar to E[X] = E[E[X|Y ]] approach. If the order of integration is
switched, it is more difficult.

E[X] =

∫ 1

−1

∫ √
1−x2

−√1−x2

xdydx

=

∫ 1

−1

xy|
√

1−x2

−√1−x2

=

∫ 1

−1

2x
√

1− x2dx

= 0

If you were to use the E[E[X|Y ]] approach, note that

fX|Y (x, y) = 2
√

1− y2; −
√

1− y2 ≤ x ≤
√

1− y2

which implies E[X|Y = y] = 0 for all y. Also note, that since this density depends on y, X
and Y are not independent.

By symmetry, E[Y ] = 0. This implies that

Cov(X,Y ) = E[XY ]− E[X]E[Y ]

= E[XY ]

=

∫ 1

−1

∫ √
1−y2

−
√

1−y2

xydxdy

=

∫ 1

−1

y

(
x2

∣∣
√

1−y2

−
√

1−y2

)
dy

=

∫ 1

−1

y × 0dy

= 0
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This can also be calculated by the iterated expectation approach as

E[XY ] = E[E[XY |Y ]]

= E[Y E[X|Y ]]

= E[Y × 0]

= 0
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