Statistics 110 - Assignment 6

Due: Thursday, August 10, 2006

1. Rice 4.94
2. Rice 4.98
3. Rice 5.5 (Hint: use the result $\left(1+\frac{a}{n}\right)^{n} \rightarrow e^{a}$)
4. Rice 5.12
5. Rice 5.14
6. Rice 5.23
7. Rice 5.24
8. Let X_{1}, X_{2}, \ldots denote an iid random sample from a distribution with cumulative distribution function $F(x)$. The sample cumulative distribution function, denoted by $F_{n}(x)$ is defined by

$$
F_{n}(x)=\frac{1}{n} \times\left[\# \text { of } X_{1}, \ldots, X_{n} \leq x\right]
$$

Show that for a fixed x where x is a continuity point of $F(x), F_{n}(x) \xrightarrow{P} F(x)$. (Hint: What is distribution of $F_{n}(x)$?)
9. Consider a Markov chain on states $\{1,2,3,4,5,6\}$. Suppose the transition probability matrix is
(a)

$$
\left[\begin{array}{cccccc}
1 / 3 & 0 & 2 / 3 & 0 & 0 & 0 \\
0 & 1 / 4 & 0 & 3 / 4 & 0 & 0 \\
2 / 3 & 0 & 1 / 3 & 0 & 0 & 0 \\
0 & 1 / 5 & 0 & 4 / 5 & 0 & 0 \\
1 / 4 & 1 / 4 & 0 & 0 & 1 / 4 & 1 / 4 \\
1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6
\end{array}\right]
$$

(b)

$$
\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 3 / 4 & 1 / 4 & 0 & 0 & 0 \\
0 & 1 / 8 & 7 / 8 & 0 & 0 & 0 \\
1 / 4 & 1 / 4 & 0 & 1 / 8 & 3 / 8 & 0 \\
1 / 3 & 0 & 1 / 6 & 1 / 4 & 1 / 4 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

For each case, find all communicating classes. Also which classes are recurrent and which are transient?
10. On any given day, Buffy is either cheerful (C), so-so (S), or gloomy (G). If she is cheerful today, then she will be C, S, or G tomorrow with respective probabilities $0.7,0.2,0.1$. If she is so-so today, then she will be C, S, or G tomorrow with respective probabilities $0.4,0.3,0.3$. If she is gloomy today, then she will be C , S , or G tomorrow with respective probabilities 0.2 , $0.4,0.4$. What proportion of time is Buffy cheerful? What is the long-run average number of iterations between gloomy days?
11. Each of 2 switches is either on or off during a day. On day n, each switch will independently on with probability

$$
[1+\text { number of on switches during day } n-1] / 4
$$

For instance, if both switches are on during day $n-1$, then each will be independently be on during day n with probability $3 / 4$. What fraction of days are both switches on?

Suggested additional problems from Rice (don't hand in)
5.13, 5.17 (also use Chebyshev to put a lower bound on n such that $P[|\bar{X}-\mu|<1] \geq 0.95$), 5.26

