1. Rice 4.94

$$
\begin{aligned}
E\left[\frac{1}{X}\right] & =\int_{10}^{20} \frac{1}{10} \frac{1}{x} d x=\frac{\ln 2}{10}=0.06931472 \\
E\left[\frac{1}{X^{2}}\right] & =\int_{10}^{20} \frac{1}{10} \frac{1}{x^{2}} d x=\frac{1}{200}=0.005 \\
\operatorname{Var}\left(\frac{1}{X}\right) & =0.005-0.06931472^{2}=0.00019751
\end{aligned}
$$

Based on $E(X)=15, \operatorname{Var}(X)=\frac{25}{3}$. Let $f(x)=\frac{1}{x}, f^{\prime}(x)=\frac{-1}{x^{2}}$, and $f^{\prime \prime}(x)=\frac{2}{x^{3}}$ so

$$
f(x) \approx \frac{1}{E[X]}-\frac{1}{(E[X])^{2}}(x-E[X])
$$

and

$$
\begin{aligned}
\text { Approx }\left(E\left[\frac{1}{X}\right]\right) & =\frac{1}{E[X]}=\frac{1}{15}=0.06667 \\
\operatorname{Approx}\left(\operatorname{Var}\left(\frac{1}{X}\right)\right) & =\frac{1}{(E[X])^{4}} \operatorname{Var}(X)=\frac{1}{15^{4}} \frac{25}{3}=0.000165
\end{aligned}
$$

The second order approximation to the mean is

$$
\text { Approx }\left(E\left[\frac{1}{X}\right]\right)=\frac{1}{E[X]}+\frac{2}{(E[X])^{3}} \operatorname{Var}(X)=\frac{1}{15}+\frac{1}{15^{3}} \frac{25}{3}=0.06914
$$

2. Rice 4.98
(a) Let $E[R]=\mu_{R}, \operatorname{Var}(R)=\sigma_{R}^{2}, E[\theta]=\mu_{\theta}, \operatorname{Var}(\theta)=\sigma_{\theta}^{2}$. Then for $g(R, \theta)=R \sin \theta$

$$
\begin{gathered}
Y \approx \mu_{R} \sin \mu_{\theta}+\sin \mu_{\theta}\left(R-\mu_{R}\right)+R \cos \mu_{\theta}\left(\theta-\mu_{\theta}\right) \\
\quad \operatorname{Approx}(\operatorname{Var}(Y))=\sigma_{R}^{2} \sin ^{2} \mu_{\theta}+\mu_{R}^{2} \sigma_{\theta}^{2} \cos ^{2} \mu_{\theta}
\end{gathered}
$$

(b) if known $R=r$, then $Y=r \sin \theta$ and

$$
\operatorname{Var}(Y) \approx r^{2} \cos ^{2} E(\theta) \operatorname{Var}(\theta)
$$

$\theta=0$ leads to the most variable estimated altitude as

$$
\frac{d}{d \theta} r^{2} \sigma_{\theta}^{2} \cos ^{2} \theta=2 r^{2} \sigma_{\theta}^{2} \sin \theta \cos \theta
$$

takes the value 0 for $\theta=0$ and $\frac{\pi}{2}$. By checking the function, $\theta=0$ corresponds to the maximum and $\frac{\pi}{2}$ to a minimum.
This answer is also supported by noting that

$$
\frac{d Y}{d \theta}=r \cos \theta
$$

is maximized by $\theta=0$.
3. Rice 5.5

Since $X_{n} \sim \operatorname{Bin}(n, p)$,

$$
M_{X_{n}}(t)=\left(1+p\left(e^{t}-1\right)\right)^{n}
$$

Making the substitution $p=\frac{\lambda}{n}$

$$
M_{X_{n}}(t)=\left(1+\frac{\lambda\left(e^{t}-1\right)}{n}\right)^{n}
$$

Then as $\left(1+\frac{a}{n}\right)^{n} \rightarrow e^{a}$,

$$
M_{X_{n}}(t) \rightarrow \exp \left(\lambda\left(e^{t}-1\right)\right)
$$

which is the moment generating function of a $\operatorname{Pois}(\lambda)$ random variable, implying $X_{n} \xrightarrow{\mathcal{D}}$ $\operatorname{Pois}(\lambda)$.
4. Rice 5.12

Let

$$
X_{i} \sim \operatorname{Unif}(-0.5,0.5) \quad E\left[X_{i}\right]=0 \quad \operatorname{Var}\left(X_{i}\right)=\frac{1}{12}
$$

So

$$
\frac{\sum_{i=1}^{100} X_{i}-0}{\sqrt{\frac{1}{12} 100}} \stackrel{\text { approx. }}{\sim} N(0,1)
$$

implying

$$
\begin{aligned}
P\left[\left|\sum_{i=1}^{100} X_{i}\right|>1\right] & \approx P\left[\left|\frac{\sum_{i=1}^{100} X_{i}}{\sqrt{\frac{100}{12}}}\right|>\frac{\sqrt{3}}{5}\right] \\
& =2\left(1-\Phi\left(\frac{\sqrt{3}}{5}\right)\right)=0.73
\end{aligned}
$$

Similarly

$$
P\left[\left|\sum_{i=1}^{100} X_{i}\right|>2\right] \approx 2\left(1-\Phi\left(2 \frac{\sqrt{3}}{5}\right)\right)=0.4884224
$$

and

$$
P\left[\left|\sum_{i=1}^{100} X_{i}\right|>5\right] \approx 2(1-\Phi(\sqrt{3}))=0.08326452
$$

5. Rice 5.14

The result of step i follows the distribution $P\left[X_{i}=+50\right]=\frac{2}{3}$ (North) and $P\left[X_{i}=-50\right]=\frac{1}{3}$ (South). Then

$$
\begin{aligned}
E\left[X_{i}\right] & =50 \frac{2}{3}-50 \frac{1}{3}=\frac{50}{3} \\
\operatorname{Var}\left(X_{i}\right) & =50^{2} \frac{2}{3}+(-50)^{2} \frac{1}{3}-\left(\frac{50}{3}\right) \\
& =\frac{2500}{3}-\frac{2500}{9}=\frac{5000}{9}
\end{aligned}
$$

The final position is given by $S_{60}=\sum_{i=1}^{60} X_{i}$. Then

$$
\begin{aligned}
E\left[S_{60}\right] & =60 \frac{50}{3}=1000 \\
\operatorname{Var}\left(S_{60}\right) & =60 \frac{5000}{9}=33333.3
\end{aligned}
$$

So $S_{60} \stackrel{\text { approx. }}{\sim} N(1000,33333.3)$. So the most likely position is $1000 \mathrm{~cm}(=10 \mathrm{~m})$ to the north of his starting position. The standard deviation of the difference from this is 182.6 cm .
6. Rice 5.23

Let Z_{1}, \ldots, Z_{n} be a set of iid indicator variables. Then $P\left[Z_{i}=1\right]=A$ and $P\left[Z_{i}=0\right]=1-A$, so $E\left[Z_{i}\right]=A$. Then by the weak law of large numbers, $\bar{Z} \xrightarrow{P} E\left[Z_{i}\right]=A$.
7. Rice 5.24

Note that $\sum_{i=1}^{n} Z_{i} \sim \operatorname{Bin}(n, A)$. So as $n \rightarrow \infty, \hat{A} \stackrel{\text { approx. }}{\sim} N\left(A, \frac{A(1-A)}{n}\right)$. So we need to choose n such that

$$
\begin{aligned}
0.99 & =P[|\hat{A}-A|<0.01] \\
& =P\left[\left|\frac{(\hat{A}-A) \sqrt{n}}{\sqrt{A(1-A)}}\right|<\frac{0.01 \sqrt{n}}{\sqrt{A(1-A)}}\right] \\
& \approx P\left[|Z|<\frac{0.01 \sqrt{n}}{\sqrt{A(1-A)}}\right]
\end{aligned}
$$

This implies that (with $A=0.2$)

$$
\frac{0.01 \sqrt{n}}{\sqrt{0.16}}=2.576
$$

or

$$
n=\frac{2.576^{2} 0.16}{0.01^{2}}=10617.2
$$

8. $n F_{n}(x) \sim \operatorname{Bin}(n, F(x))$, so by the weak law of law numbers, $F_{n}(x)$ converges in probability its success probability $F(x)$.
Another approach, is to note that $E\left[F_{n}(x)\right]=F(x)$ and $\operatorname{Var}\left(F_{n}(x)\right)=\frac{F(x)(1-F(x))}{n}$. By Chebyshev's inequality,

$$
P\left[\left|F_{n}(x)-F(x)\right| \geq \delta\right] \leq \frac{F(x)(1-F(x))}{n \delta^{2}} \rightarrow 0
$$

9. (a) $(1,3),(2,4),(5,6)$ are communicating classes, with $(1,3),(2,4)$ being recurrent, and $(5,6)$ being transient.

(b) (1), $(2,3),(6)$ are communicating recurrent classes, and $(4,5)$ is a communicating transient class.

10. Let states $1,2,3$ are notations for states $\mathrm{C}, \mathrm{S}, \mathrm{G}$ respectively. Then the transition matrix

$$
P=\left[\begin{array}{lll}
0.7 & 0.2 & 0.1 \\
0.4 & 0.3 & 0.3 \\
0.2 & 0.4 & 0.4
\end{array}\right]
$$

To find stationary distribution $\boldsymbol{\pi}=\left(\pi_{1}, \pi_{2}, \pi_{3}\right)$ is to solve

$$
\boldsymbol{\pi} P=\boldsymbol{\pi}
$$

subject to $\pi_{1}+\pi_{2}+\pi_{3}=1$. The solution is

$$
\boldsymbol{\pi}=\left(\pi_{1}, \pi_{2}, \pi_{3}\right)=\left(\frac{30}{59}, \frac{16}{59}, \frac{13}{59}\right)
$$

The the proportion of days that Buffy cheerful is $\pi_{1}=\frac{30}{59}$ and the long-run average number of iterations between gloomy days is $\frac{1}{\pi_{3}}=\frac{59}{13}=4.54$ day by applying the result that

$$
\pi_{3}=\frac{1}{E_{3}\left(T_{y}\right)}
$$

11. There are three possible states in this problem: state 1 is that both switches are off, state 2 is that one is off and the other is on, and state 3 is that both switches are on. Then the transition probability matrix is

$$
P=\left[\begin{array}{ccc}
\frac{3}{4} \times \frac{3}{4} & 2 \frac{3}{4} \times \frac{1}{4} & \frac{1}{4} \times \frac{1}{4} \\
\frac{1}{2} \times \frac{1}{2} & 2 \frac{1}{2} \times \frac{1}{2} & \frac{1}{2} \times \frac{1}{2} \\
\frac{1}{4} \times \frac{1}{4} & 2 \frac{3}{4} \times \frac{1}{4} & \frac{3}{4} \times \frac{3}{4}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{9}{16} & \frac{6}{16} & \frac{1}{16} \\
\frac{4}{16} & \frac{8}{16} & \frac{4}{16} \\
\frac{1}{16} & \frac{6}{16} & \frac{9}{16}
\end{array}\right]
$$

Solving the equations

$$
\boldsymbol{\pi} P=\boldsymbol{\pi}
$$

with $\pi_{1}+\pi_{2}+\pi_{3}=1$, then we get

$$
\boldsymbol{\pi}=\left(\pi_{1}, \pi_{2}, \pi_{3}\right)=\left(\frac{2}{7}, \frac{3}{7}, \frac{2}{7}\right)
$$

So the fraction of time that both switches are on is $\frac{2}{7}$.

Suggested Problems

1. Rice 5.13

The result of step i follows the distribution $P\left[X_{i}=+50\right]=\frac{1}{2}$ (North) and $P\left[X_{i}=-50\right]=\frac{1}{2}$ (South). Then

$$
\begin{aligned}
E\left[X_{i}\right] & =50 \frac{1}{2}-5012=0 \\
\operatorname{Var}\left(X_{i}\right) & =50^{2} \frac{1}{2}+(-50)^{2} \frac{1}{2}-0=2500
\end{aligned}
$$

The final position is given by $S_{60}=\sum_{i=1}^{60} X_{i}$. Then

$$
\begin{aligned}
E\left[S_{60}\right] & =60 \times 0=0 \\
\operatorname{Var}\left(S_{60}\right) & =60 \times 2500=150,000
\end{aligned}
$$

So $S_{60} \stackrel{\text { approx. }}{\sim} N(0,150000)$. So the most likely position is the initial starting position. The standard deviation of the difference from this is 387.3 cm .
2. Rice 5.17

$$
\begin{aligned}
P[|\bar{X}-\mu|<1] & =P\left[\left|\frac{\sqrt{n}(\bar{X}-\mu)}{5}\right|<\frac{\sqrt{n}}{5}\right] \\
& \approx P\left[|Z|<\frac{\sqrt{n}}{5}\right]=0.95
\end{aligned}
$$

So need n such that

$$
\frac{\sqrt{n}}{5}=1.96 \quad \Rightarrow \quad n=(5 \times 1.96)^{2}=96.04
$$

The Chebyshev approach gives

$$
P[|\bar{X}-\mu|<1] \geq 1-\frac{\operatorname{Var}(\bar{X})}{1^{2}}=1-\operatorname{Var}(\bar{X})
$$

Thus we need to solve

$$
\operatorname{Var}(\bar{X})=\frac{25}{n}=0.05
$$

which yields $n=\frac{25}{0.05}=500$ as a upper bound for n.
3. Rice 5.26

$$
S \sim \operatorname{Bin}(25,0.3) \approx N(7.5,5.25)
$$

Let $Y \sim N(7.5,5.25)$

x	Exact		
$P[S \leq x]$	Normal Approximation $P[Y \leq x]$	Corrected Approximation $P[Y \leq x+0.5]$	
5	0.1935	0.1376	0.1913
7	0.5118	0.4136	0.5000
9	0.8106	0.7437	0.8086
11	0.9558	0.9367	0.9596

