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Markov Chains

For independent RVs (finitely valued) X1, X2, . . . from FX(x), x ∈
{1, 2, . . . , K} we can regard them as draws with replacement from an
urn containing K types of balls, with proportions pj, j = 1, . . . , K.

A Markov Chain X1, X2, X3, . . . is a simple generalization: there are K
urns, each containing K types of balls.

The composition of urni is described by proportions pij, j = 1, . . . , K.

• Start from an initial state X0 = j0;

• Draw X1 with replacement from urnj0 → j1;

• Draw X2 with replacement from urnj1 → j2;

• P [Xn+1 = j|Xn = i] = pij are the transition probabilities.
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The transition probabilities are often given by the transition matrix

P =




p11 p12 p13 · · · p1K

p21 p22 p23 · · · p2K

p31 p32 p33 · · · p3K
... . . . ...

pK1 pK2 pK3 · · · pKK




Rows in the matrix correspond to which state you are in at time n and
columns corresponds to which state you move to at time n+1. The matrix
is square with K rows and K columns.

Note the for each {i, j}, pij ≥ 0 and for each i,
∑K

j=1 pij = 1. So the K2

entries in the matrix are non-negative who’s rows sum to 1.

Any event relating to the first n steps is a subset of the sample space with
sample points of the form

j0 j1 j2 . . . jn
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P [j0 j1 j2 . . . jn] =

P [X0 = j0]P [X1 = j1|X0 = j0]P [X2 = j2|X0 = j0X1 = j1]

× . . .× P [Xn = jn|X0 = j0, X1 = j1, . . . Xn−1 = jn−1]

= P [X0 = j0]P [X1 = j1|X0 = j0]P [X2 = j2|X1 = j1]

. . . P [Xn = j|Xn−1 = jn−1]

= P [X0 = j0]pj0j1pj1j2 . . . pjn−1jn

Markov chains are an example of conditional independence. In all cases

P [Xn+1 = j|X0 = j0, X1 = j1, . . . , Xn−1 = jn−1, Xn = jn]

= P [Xn+1 = j|Xn = jn]

In this case, once you know what Xn is, the distribution of Xn+1 doesn’t
depend on times 1, 2, . . . , n− 1.
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We will also be interested in events that are subsets of the complete sample
space, which has sample points that are infinite sequences

j0 j1 j2 j3 . . .

Probabilities of these events are obtained as limits of probabilities of events
involving finite sequences.

In this course, we will limit our treatment to only Markov chains with a
finite state space (i.e. x ∈ {1, 2, . . . , K}) or a countable (but infinite) state
space (i.e. x ∈ {1, 2, 3, . . .}).
It is also possible to have Markov chain with continuous state spaces.
However we will not discuss this situation.

Markov chains are an example of a stochastic processes, which are used to
model many phenomena. In many of these, the dependence of the present
state on the past decreases as the past becomes more distant.
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n-step transitions: The transition probabilities describe how the states
change 1 step at a time. However is can be interest to know how the state
change over 2, 3, or more steps.

The n-step transition probabilities are

p
(n)
ij = P [Xm+n = j|Xm = i] = P [Xn = j|X0 = i]

How can we get these. Well the following idea (Chapman-Kolmogov
equation) suggests an approach.

P [Xm+n = j|X0 = i] =
K∑

k=1

P [Xn = k|X0 = i]P [Xn+m = j|Xn = k]

Which can be rewritten as
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p
(n+m)
ij =

K∑

k=1

p
(n)
ik p

(m)
kj

If I want to go from i to j in n + m steps, I could go from i to k in n steps
and then from k to j in m steps.

Note that these probabilities don’t make any restriction on how you get
from i to k or k to j. For example for a three step transition from state 1
to state 4 it could be 1 → 2 → 1 → 4 or 1 → 2 → 3 → 4 (or many other
possibilities).

The matrix notation gives an easy approach to determining the n-step

transition probabilities (P (n) =
[
p
(n)
ij

]
is the n-step transition matrix).
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In matrix notation

P (2) = P 2 = PP

P (3) = P 3 = P 2P

P (4) = P 4 = P 3P = P 2P 2

P (n) = Pn
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Review: Matrix Multiplication of square matrices.

Let A and B both be K by K matrices

A =




a11 a12 a13 · · · a1K

a21 a22 a23 · · · a2K

a31 a32 a33 · · · a3K
... . . . ...

aK1 aK2 aK3 · · · aKK




B =




b11 b12 b13 · · · b1K

b21 b22 b23 · · · b2K

b31 b32 b33 · · · b3K
... . . . ...

bK1 bK2 bK3 · · · bKK




Then C = AB = [cij] is a K by K matrix with entries

cij = ai1b1j + ai2b2j + . . . + aiKbKj

The entry in the ith row and jth column of C depends on the ith row of A
and the jth column of B.
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Note that usually AB 6= BA (order matters with matrix multiplication).

So lets look at the {i, j} entry of P (2) = P 2 (call it cij for now)

cij = pi1p1j + pi2p2j + . . . + piKpKj = p
(2)
ij

so by induction, we can show that P (n) = Pn for any n.
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Example Markov chains

1. Random walk with absorbing boundaries (x ∈ {0, . . . , K})

pi,i+1 = p; pi,i−1 = q; p + q = 1

so you go to the right 1 step with probability p or left 1 step with
probability q = 1 − p, except for states 0 and K which are absorbing
with

p00 = pKK = 1
(once you get to state 0 or state K you never leave.)

P =




1 0 0 0 · · · 0
q 0 p 0 · · · 0
0 q 0 p · · · 0
... . . . ...

0 0 · · · q 0 p

0 0 · · · 0 0 1
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2. Random walk with reflecting boundaries (x ∈ {0, . . . , K})

pi,i+1 = p; pi,i−1 = q; p + q = 1

so you go to the right 1 step with probability p or left 1 step with
probability q = 1− p, except for states 0 and K with

p00 = q; p01 = p; pK−1,K = q; pKK = p

(once you get to state 0 or state K you can leave.)

P =




q p 0 0 · · · 0
q 0 p 0 · · · 0
0 q 0 p · · · 0
... . . . ...

0 0 · · · q 0 p

0 0 · · · 0 q p
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3. Bernoulli-Laplace diffusion

Urn1 and Urn2 both contains ρ particles and half the particles in the two
urns white and the other half are black.

This is model used to describe the flow of 2 incompressible liquids.

The system is said to be in state j if Urn1 contains j white particles
(j = 0, 1, . . . , ρ).
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If Xn = j, then Xn+1 is generated by choosing 1 particle from each urn
and exchanging them.

pjk =





(
j
ρ

)2

if k = j − 1

2
(

j
ρ

)(
ρ−j

ρ

)
if k = j

(
ρ−j

ρ

)2

if k = j + 1

0 otherwise
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4. Rain model

Suppose

P [Rain Tomorrow|Today, Yesterday] =





TD Y D

0.7 if 1 1
0.5 if 1 0
0.4 if 0 1
0.2 if 0 0

If

Xn =

{
1 if rains on day n

0 otherwise

This model, as described, is not a Markov chain, since it depends on
more than just the current state.
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However we can construct a Markov chain with an extended state space
to represent this process

State Present Day Previous Day

1 1 1

2 1 0

3 0 1

4 0 0

Then

Next Day Today Today Yesterday

p11 = 0.7 1 1 given 1 1
√

p12 = 0 1 0 given 1 1 ×
p13 = 0.3 0 1 given 1 1

√
p14 = 0 0 0 given 1 1 ×
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Similarly for the other 3 states, which gives a transition matrix of

P =




0.7 0 0.3 0
0.5 0 0.5 0
0 0.4 0 0.6
0 0.2 0 0.8
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Now lets assume that X0 = x, i.e we start in state x.

Definition. [Entrance Times] The entrance times to y 6= x are defined
by

Ty = T (1)
y = inf{n > 0 : Xn = y}

= first entrance time to y

T (2)
y = inf{n > T (1)

y : Xn = y}
= second entrance time to y

T (k)
y = inf{n > T (k−1)

y : Xn = y}
= kth entrance time to y

Definition. [Recurrence Times] If y = x, then the above definitions give
the recurrence times to x.
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Let

ρxx = Px[Tx < ∞] (i.e. P [Tx < ∞|X0 = x])

= probability of ever returning to x

ρxy = Px[Ty < ∞]

= probability of ever visiting y

Definition. A state y is said to be recurrent if ρyy = 1 and is said to be
transient if ρyy < 1.

Lemma. Px[T (k)
y < ∞] = ρxyρ

k−1
yy

Proof. To make k visits to y, the chain must make a first entrance to y,
and then must return to y k − 1 times, with all of these steps taking finite
times. 2
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Let N(y) =
∑∞

i=1 I{Xn = y} = number of visits to state y.

Theorem. y is a recurrent state if and only if Ey[N(y)] = ∞. If y is
transient, then

Ex[N(y)] =
ρxy

1− ρyy

Another way of thinking of the first part of this result, if y is recurrent, then
Py[y recurs infinitely often] = 1.

Before proving this result, we need one result

Lemma. Let N be a discrete random variable with possible outcomes
1, 2, 3, . . .. Then E[N ] =

∑∞
k=1 P [N ≥ k].

To prove this result, notice that P [N = k] occurs exactly k times in the
sum.
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Back to the theorem

Proof.

Ex[N(y)] =
∞∑

k=1

Px[N(y) ≥ k] =
∞∑

k=1

Px[Ty(k) < ∞]

=
∞∑

k=1

ρxyρ
k−1
yy

=

{
∞ if y is recurrent and x = y
ρxy

1−ρyy
if y is transient

2

Lemma 1. If x is recurrent and ρxy > 0, then y is recurrent and ρyx = 1

Proof. If ρxy > 0 and ρyx < 1, then starting from x, there is a positive
probability of visiting y and then not returning to x in finite time. In that
case x cannot be recurrent. Thus if x is recurrent and ρxy > 0, then ρyx

must be 1. 2
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Note that this lemma implies that if x is a recurrent state and ρxy > 0,
then ρxy = 1 as well.

Definition. Denote the state space of the chain by S. A subset C ⊂ S is
Closed if x ∈ C and ρxy > 0 implies y ∈ C.

Clearly, if C is closed, then a chain starting from x ∈ C can never leave C.

Definition. A subset D ⊂ S is Irreducible if any two states x and y in
D must be mutually reachable from each other, i.e. ρxy > 0 and ρyx > 0.

Lemma 2. Let C be a finite closed set, then C contains a recurrent state.
If further, C is irreducible, then all states in C are recurrent.

Proof. Clearly C cannot contain only transient states. If C is irreducible,
by lemma 1, all states must be recurrent if one is. 2

Lemmas 1 and 2 are useful for deciding which state are recurrent and which
are transient.
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Example

P :

1 2 3 4 5 6
1 0 1 0 0 0 0
2 0.4 0.6 0 0 0 0
3 0.3 0 0.4 0.2 0.1 0
4 0 0 0 0.3 0.7 0
5 0 0 0 0.5 0 0.5
6 0 0 0 0.8 0 0.2

• By lemma 1, state 3 can’t be recurrent.

• {1, 2} is a finite closed, irreducible set. So by lemma 2, both are
recurrent.

• Similarly, {4, 5, 6} is a finite, closed, irreducible set, hence all are
recurrent.
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Given that the only way you can get to state 3 is if you start there, how
long will you stay on average.

E3[N(3)] =
0.4

1− 0.4
=

2
3
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Lets examine the other 4 examples

1. Random walk with absorbing boundaries (x ∈ {0, . . . , K})

States 0 and K are obviously recurrent, since once you enter each of
those states you never leave them. All other states are transient.

2. Random walk with reflecting boundaries (x ∈ {0, . . . , K})

With the reflecting boundaries modification, all states are now recurrent.
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3. Bernoulli-Laplace diffusion

As there are no absorbing states here, all states must be recurrent.

4. Rain model

Similarly for this example, all states must be recurrent.
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Lets rearrange the ordering status in the example: {1, 2}, {4, 5, 6}, {3}

P :

1 2 4 5 6 3
1 0 1 0 0 0 0
2 0.4 0.6 0 0 0 0
4 0 0 0.3 0.7 0 0
5 0 0 0.5 0 0.5 0
6 0 0 0.8 0 0.2 0
3 0.3 0 0.2 0.1 0 0.4

So the transition matrix P can be written in the following block form

P =




P1 0 0
0 P2 0

Q1 Q2 P3
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The higher order transitions have matrices of the form

P 2 =




P1 0 0
0 P2 0

Q1 Q2 P3







P1 0 0
0 P2 0

Q1 Q2 P3


 =




P 2
1 0 0
0 P 2

2 0
Q

(2)
1 Q

(2)
2 P 2

3




Pn =




Pn
1 0 0
0 Pn

2 0
Q

(n)
1 Q

(n)
2 Pn

3




Each of the recurrent sets {1, 2} and {4, 5, 6} evolves independently as
Markov chains with transitions matrices P1 and P2 respectively.

P3 is a “sub-stochastic” matrix (i.e. row sum < 1) and Pn
3 → 0

Theorem. [Decomposition theorem for Markov chains]
Let R = {x : ρxx = 1} be the recurrent states. Then R = R1∪R2∪R3∪. . .,
where Ri’s are mutually exclusive, irreducible, closed sets.
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Proof. For each x ∈ R, let Cx = {y : ρxy > 0}. Cx is the set of all states
reachable from x.

1. By lemma 1, all states in Cx are recurrent.

2. Cx is obviously closed by definition.

3. For any x, y ∈ R, if Cx ∩ Cy 6= φ, then we can find a z ∈ Cx ∩ Cy so
that y is reachable from x via z and vice versa. Hence Cx ∩ Cy = φ or
Cx = Cy.

2

Thus the state space can always be decomposed as S = T∪R1∪R2∪R3∪. . .,
where T contains the transient states that eventually disappear. Once the
chain leaves the transient states, the chain evolves as an independent
Markov chain on Ri once it enters Ri.

So to understand the long term behaviour of the chain, it is sufficient to
understand the irreducible, recurrent chains.
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Stationary Distributions

Theorem. For an irreducible, recurrent chain

Px

[
Nn(y)

n
→ 1

Ey[Ty]

]
= 1

where

Nn(y) =
n∑

m=1

I{xm = y}

= Number of visits to y by time n

(The proportion of times you enter state y converges almost surely to the
reciprocal of the expected time between visits.)

Remarks:

• This theorem holds whether Ey[Ty] < ∞ or not.
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• If g(x) a function on S, then Nn(y) = # of times g(Xm) = g(y) by
time n

1
n

n∑
m=1

g(Xm) =
∑

y∈S

#(g(Xm) = g(y) by time n)
n

g(y)

→
∑

y∈S

1
Ey[Ty]

g(y)

almost surely.

An example of where this is useful would be with the rainfall example. It
would allow us to estimate the proportion of days that it actually rains.
Let

g(y) =

{
1 if y = 1, 2

0 if y = 3, 4
Thus we can just look at the proportion of times we fall in either state 1
(RR) or 2 (RRc) to estimate the long-run proportion of days with rain.
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This theorem implies that for an irreducible recurrent chain, all “time
averages” converge almost surely.

Proof. First suppose that x = y (i.e. X0 = y), and let

R(k) = T (k)
y = time to kth visit to y

= time to kth return to y

= sum of k independent draws from the distribution of Ty

So by the Strong Law of Large Numbers,

R(k)
k

→ Ey[Ty]

almost surely if X0 = y.
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Time

0 5 10 15 20n

R(Nn(y)) R(Nn(y) + 1)

In general we have R(Nn(y)) ≤ n ≤ R(Nn(y) + 1) which implies

R(Nn(y))
Nn(y)

≤ n

Nn(y)
≤ R(Nn(y) + 1)

Nn(y) + 1
Nn(y) + 1

Nn(y)

Note that Nn(y) →∞ with probability 1 (since y is recurrent).

Since R(Nn(y)+1)
Nn(y)+1 is a subsequence of R(k)

k , it converges to Ey[Ty] with

probability 1.
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Thus

P

[
n

Nn(y)
→ Ey[Ty]

]
= 1

when X0 = y. With a minor modification, it also holds when X0 = x 6=
y. 2

Corollary. If the chain is irreducible and recurrent, then

1
n

n∑
m=1

p(m)
xy → 1

Ey[Ty]

for all x, y ∈ S. That is the m-step transition probabilities converge to
some average value.

Proof. The almost sure convergence says that

Nn(y)
n

→ 1
Ey[Ty]
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this then implies (with a couple of technical points omitted)

E

[
Nn(y)

n

]
→ 1

Ey[Ty]

Finally

Ex[Nn(y)] = Ex

[
n∑

m=1

I{Xm = y}
]

=
n∑

m=1

Px[Xm = y]

=
n∑

m=1

p(m)
xy

2
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Question: How to compute the limit 1
Ey[Ty]

?

The existence of

lim
n→∞

1
n

n∑
m=1

p(m)
xy

Def
= π(y)

suggests that under some conditions,

p(m)
xy → π(y)

If so, by the Chapman-Kolmogorov

lim
n→∞

p(n+1)
xy =

∑
z

(
lim

n→∞
p(n)

xz

)
pzy

or
π(y) =

∑
z

π(z)pzy (*)
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(π = πP in matrix formulation (π is a row vector of length K)).

We want to find a solution to (*) that represents a PMF.

Definition. A solution of (*) satisfying

π(y) ≥ 0,
∑

y∈S

π(y) = 1

is known as the stationary distribution of the Markov chain.

If π(·) is a stationary distribution and X0 ∼ π(·), then p
(n)
xy = π(y) for all

n, i.e. Xn ∼ π(·) for all n.

Comment: If S = {1, 2, . . . , K} is finite, then π = (π1 π2 . . . πK) and P
is a K ×K matrix. Then π is stationary if

• πi ≥ 0,
∑K

i=1 πi = 1

• π is a (left) eigenvector of P with a non-zero eigenvalue
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Examples:

• Rainfall model:

Let us assume that p
(m)
xy → π(y) (which it does), then

(π1 π2 π3 π4)




0.7 0 0.3 0
0.5 0 0.5 0
0 0.4 0 0.6
0 0.2 0 0.8


 = (π1 π2 π3 π4)

or

0.7π1 + 0.5π2 = π1 (1)

0.4π1 + 0.2π2 = π2 (2)

0.3π1 + 0.5π2 = π3 (3)

0.6π1 + 0.8π2 = π4 (4)

Stationary Distributions 37



(1) + (3) ⇒ π2 = π3

(1) ⇒ π1 =
5
3
π2

+ (2) ⇒ π4 = 3π2

If we set π2 = 1, then π ∝ (5
3 1 1 3). Normalize this so it sums to 1

(making it a proper distribution) gives

π =
(

5
20

3
20

3
20

9
20

)
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State Current Day Previous Day Probability

1 1 1 5
20

2 1 0 3
20

3 0 1 3
20

4 0 0 9
20

P [Rain on current day] =
8
20

= P [Rain on previous day]

P [No rain on current day] =
12
20

=
3
5

= P [No rain on previous day]

These imply that we should expect to go 2.5 days with between rainy
days and 1.67 days between sunny days since the expected return time
to a state is the reciprocal of its stationary probability.
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• Random walk with reflecting boundaries (x ∈ {0, . . . , K})

To find the stationary probabilities for this chain, we need to solve the
system

(π0 π2 . . . πK)




q p 0 0 · · · 0
q 0 p 0 · · · 0
0 q 0 p · · · 0
... . . . ...

0 0 · · · q 0 p

0 0 · · · 0 q p




= (π0 π2 . . . πK)

subject to
∑K

i=0 πi = 1.
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This leads to

qπ0 + qπ1 = π0 ⇒ π1 =
p

q
π0

pπ0 + qπ2 = π1 ⇒ π2 =
p

q
π1 =

(
p

q

)2

π0

pπ1 + qπ3 = π2 ⇒ π3 =
p

q
π2 =

(
p

q

)3

π0

· · ·

pπK−2 + qπK = πK−1 ⇒ πK =
p

q
πK−1 =

(
p

q

)K

π0

pπK−1 + pπK = πK ⇒ πK−1 =
q

p
πK
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So

πj =
(

p

q

)j

π0 and πK−j =
(

q

p

)j

πK

– If p = 0.5 = q, then π0 = π1 = . . . πK = 1
K+1. So you expect to

spend the same amount of time in each state in the long-run.

– If p < 0.5 (q > 0.5) (tend to move to lower state), then

π0 =
1− p/q

1− (p/q)K+1
; πj =

(
p

q

)j 1− p/q

1− (p/q)K+1

So the lower the state number, the more time you tend to spend in
that state.

– If p > 0.5 (q < 0.5) (tend to move to higher state), then

πK =
1− q/p

1− (q/p)K+1
; πK−j =

(
q

p

)j 1− q/p

1− (q/p)K+1
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So the higher the state number, the more time you tend to spend in
that state.

The expected recurrence times are

– p = q = 0.5: Ej[Tj] = K + 1
– p < 0.5:

Ej[Tj] =
(

q

p

)j 1− (p/q)K+1

1− p/q

So the higher the state number, the longer it tends to be before you
return.

– p > 0.5:

EK−j[TK−j] =
(

p

q

)j 1− (q/p)K+1

1− q/p

So the lower the state number (bigger j’s), the longer it tends to be
before you return.
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Theorem. If a Markov chain has a stationary distribution, then any state
with a positive probability under the stationary distribution is recurrent

Proof. Suppose π(·) is the stationary distribution and let N(y) =∑∞
n=1 I{Xn = y}. Then by lemma 1,

Ex[N(y)] =
ρxy

1− ρyy

thus we have ∞∑
n=1

p(n)
xy =

ρxy

1− ρyy
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Then E[N(y)] satisfies

∑
x

π(x)
∞∑

n=1

p(n)
xy =

∑
x

π(x)
ρxy

1− ρyy

∞∑
n=1

(∑
x

π(x)p(n)
xy

)

︸ ︷︷ ︸
yth component of πP n(=π)

=
∑

x

π(x)
ρxy

1− ρyy

So ∞∑
n=1

π(y) =
(
∑

x π(x)ρxy)
1− ρyy

If π(y) > 0, then the left hand side must be ∞, which can only occur if
ρyy = 1 (i.e. y is a recurrent state). 2
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Theorem. If a Markov chain is irreducible and has a stationary distribution
π(·), then

π(y) =
1

Ey[Ty]

Proof. Since S is countable (or finite), there is a x ∈ S such that π(x) > 0.
By the previous theorem, this x is recurrent, and hence by the irreducibility,
all state are recurrent. Since the chain is irreducible and recurrent, the
corollary (page 33) applies, giving

1
n

n∑
m=1

p(m)
xy → 1

Ey[Ty]

1
n

n∑
m=1

∑
x

π(x)p(m)
xy →

∑
x

π(x)
1

Ey[Ty]

1
n

n∑
m=1

π(y) →
∑

x

π(x)
1

Ey[Ty]

2
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Definition. If Ey[Ty] < ∞, then π(y) > 0 and y is said to be a positive
recurrent state. If y is recurrent with Ey[Ty] = ∞, then π(y) = 0 and y is
said to be a null recurrent state.

Theorem. For a irreducible chain, the following are equivalent:

1. There is a positive recurrent state

2. There is a unique stationary distribution

3. All states are positive recurrent

Stationary Distributions 47



Proof. (1 ⇒ 2)

If x is recurrent, let T = Tx = first return time. Then

µx(y) = Ex[# of visits to y by X0, X1, . . . XT−1]

= Ex

[
T−1∑
n=0

I{Xn = y}
]

=
∞∑

n=0

Px[Xn = y, T > n]
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Since X0 = XT (by construction), we also have

µx(y) = Ex[# of visits to y by X1, . . . XT−1]

=
∞∑

n=1

Px[Xn = y, T ≥ n]

=
∞∑

n=1

[∑
z

Px[Xn−1 = z, T > n− 1]pzy

]

=
∑

z

( ∞∑
m=0

Px[Xm = z, T > m− 1]pzy

)

=
∑

z

µx(z)pzy
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Thus
µx(y)∑
z µx(z)

is a stationary distribution since

∑
z

µx(z) =
∞∑

n=0

Px[T > n] = Ex[T ] < ∞

2

Proof. (2 ⇒ 3)

Pick x with π(x) > 0, then for any y,

π(y) =
∑

z

π(z)p(n)
zy ≥ π(x)p(n)

xy

By irreducibility, p
(n)
xz > 0 for some n, hence π(y) > 0 and y is positive

recurrent. 2
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Proof. (3 ⇒ 1)

Obvious. :)

2

The assumption about irreducibility is important. Otherwise there can be a
multitude of stationary distributions.

Example: 6 state example with

P =




P1 0 0
0 P2 0

Q1 Q2 P3




Let a be a stationary distribution of P1 (i.e. ai ≥ 0,
∑

ai = 1,aP1 = a)
and let π1 = (a 0 0). Then

π1P
n = (aPn

1 0 0) = π1
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Similarly, if b is a stationary distribution for P2, then π2 = (0 b 0) is also
a stationary distribution for P .

In addition, any PMF of the form

απ1 + (1− α)π2

is also a stationary distribution of P .
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Periodic Chains

Example

P =

[
0 1
1 0

]

P (2) =

[
1 0
0 1

]

Then for n = 1, 2, 3, . . . , P (2n−1) = P and P (2n) = P (2)

For each x,Ex[Tx] = 2 and

1
n

∞∑
m=1

p(m)
xy → (0.5 0.5)
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This chain is irreducible, recurrent, and has a stationary distribution, and

generally satisfies all of the previous results. However p
(m)
xy does not

converge. The problem is due to periodicity.

Definition. Let x be a recurrent state, and let

Ix = {n : n ≥ 1, p(n)
xx > 0}

dx = Greatest common divisor of Ix

dx is called the period of x.

In the above example, Ix = {2, 4, 6, 8, . . .} for x = 1 or 2. Thus the chain
has period 2.

Lemma. For an irreducible, recurrent chain, all states have the same
period.

Proof. By irreducibility, for any x, y ∈ S, there exist k, l > 0 such that

p(k)
xy > 0 p(l)

yx > 0
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Thus
p(k+l)

yy ≥ p(l)
yxp(k)

xy > 0

Thus dy divides k + l. Then for n ∈ Ix, we have

p(k+l+n)
yy ≥ p(l)

yxp(n)
xx p(k)

xy > 0

so dy also divides k + l + n. For this to hold dy must divide n for any
n ∈ Ix. Since dx is the greatest common divisor of Ix, dx ≥ dy. By an
equivalent argument dy ≥ dx. Thus dx = dy. 2
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Note that the irreducible assumption is important as can be seen in the
following example

States 1,2,3, and 7 all have period 2, where states 4,5,6 have period 1.

Definition. An irreducible, recurrent chain is said to be aperiodic is the
period of the states in the chain is 1. If the chain has a period > 1, the
chain is said to be periodic.

Lemma. If dx = 1, then there is a m0 > 0 such that

p(m)
xx > 0 for all m ≥ m0
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Example: Random walk with reflecting boundaries (x ∈ {0, . . . , K})

For state 2, I2 = {2, 4, 5, 6, 7, 8, . . . } (assuming K ≥ 4), so d2 = 1 and
m0 = 4.

For state 3, I3 = {2, 4, 6, 7, 8, . . . } (assuming K ≥ 6), so d3 = 1 and
m0 = 6.

Proof.

1. Suppose Ix contains 2 consecutive integers, then the result must hold.
To see this, suppose N, N +1 ∈ Ix. Then for any m ≥ N2, we can write

m−N2 = kN + r; k ≥ 0, 0 ≤ r < N
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or
m = r + N2 + kN = r(N + 1) + (N + k − r)N

Now if n1 and n2 are in Ix, so must be n1 + n2 and jn1 for j ≥ 1.
Therefore m ∈ Ix.

2. Show that Ix must contain 2 consecutive integers. Choose n0, n0 + k ∈
Ix. If k = 1, we’re done. If k > 1, then k does not divide some n1 ∈ Ix

(since dx = 1 is the only common divisor). Write n1 = mk + r with
0 < r < k, m ≥ 0. Then

N1
Def
= (m + 1)n0 + n1 ∈ Ix

N2
Def
= (m + 1)(n0 + k) ∈ Ix

Then
N2 −N1 = (m + 1)k − (mk + r) = k − r

which satisfies 0 < k − r < k. So we have found a pair in Ix with a
smaller difference. Repeat this argument until the difference is 1.
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2

Theorem. If a Markov chain, is irreducible, recurrent, aperiodic, and has
a stationary distribution π(·), then

p(n)
xy → π(y)

Examples:

• Bernoulli-Laplace diffusion

Since this chain is irreducible, recurrent and aperiodic, the n-step
transition probabilities will converge to π(·). We can see that this
chain is aperiodic since for some states it is possible to return in 1 step.
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• Rain model

Similarly, this chain is also irreducible, recurrent and aperiodic, so n-step
transition probabilities will converge to the stationary distribution π(·)
calculated last class.

Proof. This proof relies on the trick known as “coupling of two independent
copies”. Let {Xn} be a Markov chain evolving according to P , and {Yn}
be another chain evolving according to P independently of {Xn}. Let
Zn = (Xn, Yn). Then {Zn} is a Markov chain on the sample space S × S
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with transition probabilities

p̃(z1, z2) = px1x2py1y2

if z1 = (x1, y1) and z2 = (x2, y2).

There are 4 steps we need to justify to prove the result.

1. {Zn} is a irreducible chain.

Since {Xn} and {Yn} are irreducible chains, p
(k)
x1x2 > 0, p

(l)
y1y2 > 0 for

some k, l > 0. By aperiodicity, we can find m large enough so that

p
(l+m)
x2x2 > 0, p

(k+m)
y2y2 > 0. Then

p̃(k+l+m)((x1, y1), (x2, y2)) = p(k+l+m)
x1x2

p(k+l+m)
y1y2

> 0

since p
(k+l+m)
x1x2 ≥ p

(k)
x1x2p

(l+m)
x2x2 > 0 (similarly for p

(k+l+m)
y1y2 ). Thus {Zn}

is irreducible.
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2. Let T = first time Zn = (Xn, Yn) hits the diagonal {(y, y) : y ∈ S}.
Then T < ∞ almost surely and P [T > n] → 0.

π̃(x, y) = π(x)π(y) is the stationary distribution for {Zn}. Thus by an
earlier result, all states are positive recurrent. In particular, T(y,y) < ∞
almost surely, which implies that miny∈S T(y,y) < ∞ almost surely. Also
its easy to see that P [T < ∞] = 1 ⇒ P [T > n] → 0.
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3. P [Xn = y, T ≤ n] = P [Yn = y, T ≤ n], i.e. on the set {T ≤ n}, Xn

and Yn have the same distribution.

P [Xn = y, T ≤ n] =
n∑

m=1

P [T = m,Xn = y]

=
n∑

m=1

∑

x∈S

P [T = m,Xm = x,Xn = y]

=
n∑

m=1

∑

x∈S

P [T = m,Xm = x]P [Xn = y|Xm = x]

=
n∑

m=1

∑

x∈S

P [T = m,Ym = x]P [Yn = y|Ym = x]

= P [Yn = y, T ≤ n]
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4.
∑

y∈S |P [Xn = y]− P [Yn = y]| ≤ 2P [T > n]

P [Xn = y] = P [Xn = y, T ≤ n] + P [Xn = y, T > n]

= P [Yn = y, T ≤ n] + P [Yn = y, T > n]

which implies

P [Xn = y] ≤ P [Yn = y] + P [Xn = y, T > n]

P [Yn = y] ≤ P [Xn = y] + P [Yn = y, T > n]

|P [Xn = y]− P [Yn = y]| ≤ P [Xn = y, T > n] + P [Yn = y, T > n]

∑

y∈S

|P [Xn = y]− P [Yn = y]| ≤
∑

y∈S

P [Xn = y, T > n] + P [Yn = y, T > n]

= P [T > n] + P [T > n]
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5. Now take X0 = x, then P [Xn = y] = p
(n)
xy . Also take Y0 ∼ π(·), then

P [Yn = y] = π(y). Then by 4., we have

∑

y∈S

|p(n)
xy − π(y)| ≤ 2P [T > n] → 0 by 2.

2
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