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Monte Carlo Example

Example: Bayesian Analysis of the ED50 of an Anti-pneumococcus serum

An experiment was performed to study an anti-pneumococcus serum. The
serum was given to 200 mice (40 at each of 5 doses), the mice were exposed
to pneumococcus (the bacterium associated with pneumonia) and observed
for a week. Survival after the week was recorded for each mouse.

Serum Dose (cc) # Survived out of 40

0.0028 5

0.0056 19

0.0112 31

0.0225 34

0.0450 39
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One factor of interest was the dose that would lead to a 50% survival rate
(known as the ED50) based on the following Bayesian logistic model

Xi|α, β
ind∼ Bern(pi)

α
ind∼ N(10, 100)

β
ind∼ N(1, 100)

where

pi =
eα+β log(dosei)

1 + eα+β log(dosei)

log
pi

1− pi
= α + β log(dosei)

The prior distributions on α and β used here were chosen to make the
problem concrete, but in general could be based on studies of similar sera.
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To get a 50% survival rate, we need to find the dose satisfying

eα+β log(dose)

1 + eα+β log(dosei)
= 0.5 ⇐⇒ α + β log(dose) = 0

yielding
ED50 = e−α/β

Since α and β are random variables in this setting, so ED50. Thus we
are interested in the posterior distribution of ED50 given the survival data.
Lets focus on the quantities

E[ED50|X] = E

[−α

β
|X

]

Med(ED50|X) = Med
(−α

β
|X

)

SD(ED50|X) = SD
(−α

β
|X

)
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The posterior density of α and β, given the data X = {X1, . . . , X200}
satisfies

f(α, β|X) ∝ 1
10
√

2π
exp

(−(α− 10)2

200

)
1

10
√

2π
exp

(−(β − 1)2

200

)

×
200∏

i=1

(
eα+β log(dosei)

1 + eα+β log(dosei)

)xi ( 1
1 + eα+β log(dosei)

)1−xi

This is not proportional to a known density thus its properties are not
known. In addition, trying to calculate expected values based on this
exactly are likely to be impossible.

However it is possible to generate samples from f(α, β|X) and thus
investigate properties of this distribution via Monte Carlo.
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To study the posterior distribution
of ED50, 10000 samples (αi, βi)
were simulated from f(α, β|X)
and

ED50i = e−αi/βi

was calculated, giving 10000
samples from f(ED50|X). Based
on these samples

Ê[ED50] = 0.00686

Med(ED50) = 0.00683

ŜD(ED50) = 0.00078

The sampling scheme used in this case was Metropolis-Hastings, a form
Markov Chain Monte Carlo.
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Monte Carlo

Many computations involving distributions can not be done exactly as we
have seen during to term. A popular approximation approach is Monte
Carlo Simulation.

Suppose we are interested in a calculation of the form

E[g(X)] =
∫

g(x)f(x)dx X is continuous

or

=
∑

g(xi)p(xi) X is discrete
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Calculations that fit into this framework are

• Moments: E[X], Var(X), etc

These were of interest, for example, in the SST project

• Probabilities: P [a ≤ X ≤ b]

P [a ≤ X ≤ b] = E[I(a ≤ X ≤ b)]

We have seen this calculation done with the histograms of sampling
distributions.
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• True confidence level of a confidence interval on a population mean

The common confidence interval for µ, the population mean, is

(
X̄ − t∗

s√
n
, X̄ + t∗

s√
n

)

where t∗ = t1−α/2.

If X1, . . . , Xn
iid∼ N(µ, σ2), the true coverage probability (confidence

level) will be 1 − α. However if the data is sampled from a different
distribution, the true confidence level depends on how well the normal
approximation to the distribution X̄ works.

Want to know the real probability that a randomly chosen sample leads
to having the truth in the interval, i.e.

P

[
X̄ − t∗

s√
n
≤ µ ≤ X̄ + t∗

s√
n

]
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• Width of confidence intervals

In many situations, confidence intervals for parameters are of the form

Est± t∗SEst

(such as the previous case). So the width of the interval (Width
= 2t∗SEst) is a random quantity. Often of interest are

E[Width] or Var(Width)
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Sample X1, X2, . . . , Xn from CDF FX(x) and approximate µg = E[g(X)]
by

ḡ =
1
n

n∑

i=1

g(xi)

Under certain regularity conditions

1
n

n∑

i=1

g(xi) → E[g(X)]

by the Law of Large Numbers.

In addition, if Var(g(X)) < ∞ (and maybe other regularity conditions), by
the Central Limit Theorem

ḡ − µg

SD(ḡ)
D−→ N(0, 1)

Thus, we can get as accurate an approximation to E[g(X)] by Monte Carlo
as desired.
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Issues

While the basic scheme appears to be easy, there are a number of issues to
consider. We want to be able to get a precise answer quickly. The basic
approach may be inefficient.

• Distribution of X

– Univariate versus multivariate
– Form of distribution. Do we know the density exactly or the basic

form of it.

• Function being integrated

• Sampling Scheme

– Independent and identically distributed draws
– Simple Random Sample vs Stratfied vs ???
– Importance Sampling (sample from a different distribution)
– Dependent samples (Markov Chain Monte Carlo)
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Simulation of Random Variables

While the basic distribution are built into many packages that can do
simulation, not all that are necessary are. We need additional techniques to
be able to sample from these other distributions.

• Inverse CDF

• Relationships with other distributions

• Acceptance - Rejection Sampling

• Plus many more
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Inverse CDF Method

Let F (x) = P [X ≤ x] be the CDF of the random variable X.
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(x

)

F−1(u)

u

Then the inverse CDF (or quantile
function) is defined by

F−1(u) = inf{x : F (x) ≤ u}

For continuous RVs

P [F (X) ≤ u] = P [X ≤ F−1(u)] = F (F−1(u)) = u

i.e. F (X) ∼ U(0, 1)
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Thus given and iid U(0, 1) sample u1, . . . , um, an iid sample x1, . . . , xm

from F can be obtained by

xi = F−1(ui)

Examples:

1. Cauchy(µ, σ)

F (x) =
1
2

+
1
π

arctan
(

x− µ

σ

)

F−1(u) = µ + σ tan(π(u− 0.5))

2. Exp(µ)

F (x) = 1− e−xµ

F−1(u) = −1
µ log(1− u)
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3. Discrete distributions

Suppose that the random variable X has possible values s1, s2, . . . , sk (k
possibly infinite) and let the values of the CDF be

Pj =
j∑

i=1

P [X = si] = P [X ≤ sj]

Then independent observations xi can be generated by setting xi = sj if

Pj−1 < ui ≤ Pj

where P0 = 0 and ui ∼ U(0, 1)

Note that

P [X = xj] = Pj − Pj−1 = P [X ≤ xj]− P [X ≤ xj−1]

so the draws do have the correct distribution.
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Advantages:

• Will give draws from the correct distribution

Disadvantages:

• While the density is often of a nice form, the CDF and its inverse often
aren’t (e.g. Normal, Gamma, Beta, etc).

• Though there are often good approximations for the quantile function
(e.g. R and Matlab often use rational function approximations), these
are often slow and poor for simulation purposes (particularly in the tails
of the distribution).

• For a discrete distribution with many classes, they may be many
comparisons made to determine xj. For example, R doesn’t use this
approach for Binomial draws if np > 30
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Relationships with Other Distributions

Examples:

• X ∼ N(µ, σ2) then Y = eX ∼ LogN(µ, σ2)

• X ∼ N(0, 1) then Y = X2 ∼ χ2
1

• Xα ∼ Gamma(1, α), Xβ ∼ Gamma(1, β) then

Y =
Xα

Xα + Xβ
∼ Beta(α, β)

• X ∼ U(0, 1) then Y = − log X ∼ Exp(1)

The inverse CDF method can be thought of as a special case of this.
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Advantages:

• Will give draws from the correct distribution

Disadvantages:

• Many distributions don’t have useful relationships

• Can be inefficient as functions like log, sin, cos can be somewhat
expensive to calculate
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Acceptance-Rejection
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Half Normal
c * Exp(1)

Due to von Neumann (1951)

Want to simulate from a
distribution with density f(x).

Need to find a “dominating”
or majorizing distribution g(x)
where g is easy to sample from
and

f(x) ≤ cg(x) = h(x)

for all x and some constant c > 1.
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Sampling scheme

1. Sample x from g(x) and compute the acceptance ratio

r(x) =
f(x)
cg(x)

=
f(x)
h(x)

≤ 1

2. Sample u ∼ U(0, 1)

If u ≤ r(x) accept and return x

If u > r(x) reject and go back to 1)

Note that this step is equivalent to flipping a biased coin with success
probability r(x)

Then the resultant sample is a draw from the density f(x).

Simulation of Random Variables 20



Proof. Let I be the indicator of whether a sample x is accepted. Then

P [I = 1] =
∫

P [I = 1|X = x]g(x)dx

=
∫

r(x)g(x)dx

=
∫

f(x)
cg(x)

g(x)dx =
1
c

Next

p(x|I = 1) =
f(x)
cg(x)

g(x)
/

P [I = 1]

=
f(x)

c
c = f(x)

2
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For a more geometrical proof see
Flury (1990). Its based on the
idea of drawing uniform points
(x, y) under the curve h(x) and
only accepting the points that
also lie under the curve f(x).

The number of draws needed
until an acceptance occurs is
Geometric(1

c) and thus the
expected number of draws until
a sample is accepted is c.

The acceptance probability satisfies

1
c

=
∫

f(x)dx∫
cg(x)dx

=
Area under f(x)
Area under h(x)
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One consequence of this is that c should be made as small as possible to
minimize the number of rejections.

The optimal c is given by

c = sup
f(x)
g(x)

Note that the best c need not be determined, just one that satisfies

f(x) ≤ cg(x) = h(x)

for all x.
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Example: Generating from the half normal distribution
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f(x) = 2φ(x)I(x ≥ 0)

=

√
2
π

exp(−0.5x2)I(x ≥ 0)

Lets use an Exp(1) as the
dominating density

g(x) = e−xI(x ≥ 0)

The optimal c for this example is

c =

√
2
π

exp(0.5) ≈ 1.315

so the acceptance rate is approximately 76%
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This the acceptance-rejection scheme is

1. Draw x ∼ Exp(1)

r(x) = exp(−0.5(x− 1)2)

2. Draw u ∼ U(0, 1)

If u ≤ r(x) accept and return x

If u > r(x) reject and go back to 1)

Note that this approach can be used to simulate N(0, 1) random variables.
Draw X by this scheme. Then draw S from the distribution

P [S = 1] = P [S = −1] = 0.5

Then Z = SX ∼ N(0, 1) by the symmetry of the normal density.
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Advantages:

• Will give draws from the correct distribution.

• Extremely flexible.

• Approach will work for a wide range of problems.

• For many problems there are good choices for the majorizing distribution
(i.e. log concave densities).

• Will work for multivariate distributions.

Disadvantages:

• Maybe inefficient (large c).

• How to pick majorizing distribution not always clear.
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Simulation - Joint and Marginal Distributions

Joint Distribution:

Want to simulate X, Y from f(x, y)

• Sample xi from fX(x); i = 1, . . . , n

• Sample yi from fY |X(y|xi); i = 1, . . . , n

Justification that this scheme actually draws from the joint distribution:

The joint empirical CDF of (xi, yi); i = 1, . . . , n is

F̂ (x, y) =
1
n

n∑

i=1

I(xi ≤ x, yi ≤ y) =
1
n

n∑

i=1

I(xi ≤ x)I(yi ≤ y)
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The expected value of the ECDF is

E[F̂ (x, y)] = E[I(X ≤ x)I(Y ≤ y)] = P [X ≤ x, Y ≤ y] = F (x, y)

since

E[I(xi ≤ x)I(yi ≤ y)] =
∫ ∞

−∞

∫ ∞

−∞
I(xi ≤ x)I(yi ≤ y)fX(xi)fY |X(yi|xi)dyidxi

=
∫ x

−∞

∫ y

−∞
fX,Y (xi, yi)dyidxi

= P [X ≤ x, Y ≤ y]

The ECDF is an unbiased estimate of the CDF.
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In addition

Var(F̂ (x, y)) =
FX,Y (x, y)(1− FX,Y (x, y))

n
−→ 0

as n →∞, which implies F̂ (x, y) P−→ FX,Y (x, y).

This result can also be seen by noting that nF̂ (x, y) ∼ Bin(n, FX,Y (x, y))
and applying standard binomial convergence results.

Of course this scheme can be extended to an arbitrary number of random
variables based on

FX1,...,Xk
(x1, . . . , xk) = FX1(x1)FX2|X1

(x2|x1) . . .

× FXk|X1,...,Xk−1
(xk|x1, . . . , xk−1)

Simulation - Joint and Marginal Distributions 29



Marginal Distribution:

Want to simulate Y based on f(x, y) (assume that fY (y) isn’t nice)

• Sample xi from fX(x); i = 1, . . . , n

• Sample yi from fY |X(y|xi); i = 1, . . . , n

• Keep only yi; i = 1, . . . , n

Justification that this scheme actually draws from the marginal distribution
FY (y):

The empirical CDF of yi; i = 1, . . . , n is

F̂ (y) =
1
n

n∑

i=1

I(yi ≤ y)

Simulation - Joint and Marginal Distributions 30



The expected value of the ECDF is

E[F̂ (y)] = E[I(Y ≤ y)] = P [Y ≤ y] = FY (y)

since

E[I(yi ≤ y)] =
∫ ∞

−∞

∫ ∞

−∞
I(yi ≤ y)fX(xi)fY |X(yi|xi)dyidxi

=
∫ y

−∞

∫ ∞

−∞
fX,Y (xi, yi)dxidyi

=
∫ y

−∞
fY (yi)dyi

= P [Y ≤ y]
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Similarly to before

Var(F̂ (y)) =
FY (y)(1− FY (y))

n
−→ 0

as n →∞, which implies F̂ (y) P−→ FY (y).
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Monte Carlo Examples

• Confidence Interval Properties

Let X1, X2, . . . , Xn be iid draws from N(µ, σ2). The a 100(1 − α) %
confidence interval for µ is

x̄± t1−α/2
s√
n

where t1−α/2 = t∗ is the 100(1− α
2 ) percentile from a t distribution with

n− 1 degrees of freedom.

This interval gets used in many situations when the data isn’t normal.
This interval is considered to be fairly robust when the data isn’t normal,
but lets check it by examining the properties of this procedure when the
data isn’t normal.
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Of interest are

1. True confidence level

C = P

[
X̄ − t∗

S√
n
≤ µ ≤ X̄ + t∗

S√
n

]

If Xi ∼ N(µ, σ2), this probability is 1− α.

2. Expected width of the confidence level

E[Width] = E

[
2t∗

S√
n

]
= 2

t∗√
n
E[S]

Note that for Xi ∼ N(µ, σ2),

E[Width] = 2t∗
Γ(n/2)

Γ((n− 1)/2)

√
2√

n(n− 1)
σ

If n = 10 and σ = 1, the mean width is 1.392.

Monte Carlo Examples 34



For simulation i, i = 1, . . . , 1000, let x̄i and si be the sample average
and standard deviation of the simulated data and wi be the width of the
corresponding confidence interval. Then the estimates for the confidence
level and expected width are

1. Confidence level

Ĉ =
1

1000

1000∑

i=1

I

(
x̄i − t

si√
10
≤ µ ≤ x̄i + t

si√
10

)

This is just the sample proportion of intervals containing the truth.

The standard error of this estimate is given by

SEĈ =

√
Ĉ(1− Ĉ)

1000
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2. E[Width]

w̄ =
1

1000

1000∑

i=1

wi =
1

1000

1000∑

i=1

2t∗√
10

si

=
2t∗√
10

s̄

The standard error of this estimate is given by

SEw̄ =
sw√
1000

=
2t∗√
10

ss√
1000

where sw is the sample standard deviation of the wi and ss is the
sample standard deviation of the si.
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Lets examine these in the following 4 situations

1. N(0, 1)

2. t3 (µ = 0, σ =
√

3 = 1.732)

3. Exp(0.2) (µ = σ = 5)

4. U(−1, 1) (µ = 0, σ = 0.577)

where the confidence level C = 0.95 and sample size n = 10 with
m = 1000 simulated data sets.

For simulated data set i, X1, X2, . . . , X10 are generated from the
desired distribution and x̄i, si, and wi are calculated and then

I
(
x̄i − t si√

10
≤ µ ≤ x̄i + t si√

10

)
is determined.
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1. Confidence level (nominal = 0.95)

Distribution Ĉ SEĈ 95% CI

N(0, 1) 0.954 0.0066 (0.9410, 0.9670)

t3 0.965 0.0058 (0.9536, 0.9764)

Exp(0.2) 0.904 0.0093 (0.8857, 0.9223)

Unif(−1, 1) 0.932 0.0080 (0.9164, 0.9476)

So the simulations suggest that the true confidence level for the normal
case is correct, it a bit higher than the nominal level for the t3 case,
and a bit lower than the nominal level for the exponential and uniform
cases.
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2. E[Width]

Distribution w̄ SEw̄ 95% CI

N(0, 1) 1.394 0.0099 (1.374, 1.413)

t3 2.110 0.0292 (2.053, 2.167)

Exp(0.2) 6.673 0.0865 (6.503, 6.842)

Unif(−1, 1) 0.812 0.0043 (0.804, 0.821)

Cauchy Example: The assumption that E[|g(X)|] < ∞ underlying the
Law of Large Numbers is important. Since the Cauchy distribution
has no finite moments, E[S] = ∞, and thus the mean interval width
is ∞. Thus the reported sample average and standard error are not
meaningful.

In the simulations, there are 15 intervals with widths > 200, with the
largest being 10640.
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• Bayesian Analysis

Air Conditioning Failures in a Boeing 720 (Proschan, 1963)

For plane 7910 (there are 13 planes in the complete dataset), the times
between failures (in hours) are 74, 57, 48, 29, 502, 12, 70, 21, 29, 386,
59, 27, 153, 26, 326 (n = 15) (x̄= 121.27)

Assume that Xi
iid∼ Exp(θ). However the value for θ is unknown.

Suppose that based on information from other planes, we can put a
distribution on it

θ ∼ Gamma(5, 500)

which has mean 0.01 and standard deviation 0.00447.

How does the data collected change our belief on θ. This is described by
the conditional distribution of θ given the observations x1, x2, . . . , x15.
It can be shown that

θ|x1, . . . , x15 ∼ Gamma(5 + 15, 500 + 15x̄) = Gamma(20, 2319)
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E[θ] = 0.01 E[θ|x1, . . . , x15] = 0.00862

Var(θ) = 0.0000200 Var(θ|x1, . . . , x15) = 0.0000037

SD(θ) = 0.00447 SD(θ|x1, . . . , x15) = 0.00193
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Note: The conditional distribution can be shown by using the facts

1. X̄|θ ∼ Gamma(n, θ/n)

2. The distribution θ|X̄ is the same as the distribution of θ|x1, . . . , x15

Suppose that we are interested in

1. Mean time between failures

µF = E

[
1
θ

]

I think the truth is 122.05 hours.

2. For future observations, what is the chance of going over 150 hours
before a failure?

p150 = P [X > 150] = E
[
e−150θ

]

I believe this probability is 0.2855.

Lets use simulation to check my calculus.
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We can examine both calculations with a single simulation. Generate
θ1, θ2, . . . , θm from Gamma(20, 2319). Then estimate the two quantities
by

µ̂F =
1
m

m∑

i=1

1
θi

p̂150 =
1
m

m∑

i=1

e−150θi

Aside: One advantage of simulation procedures is that a single sample
can be used to do more than one calculation. In this example, one
sample is being used to calculate 2 different expectations (and could be
used to do many more).

The following simulation results are based on m = 10, 000 imputations.

Monte Carlo Examples 45



Mean Failure Time
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µ̂F = 121.781 p̂150 = 0.2848

SE(µ̂F ) = 0.285 SE(p̂150) = 0.00079

µF = 122.05 p150 = 0.2855

Both estimated values are about 1 standard error from the proposed
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values, suggesting I did the calculus correctly.

For completeness, lets check to see how well the simulated θs agree with
the conditional distribution of θ.
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How many imputations?

When designing a Monte Carlo study, the sample size m need to be
determined.

The usual approach is by bounding the standard error of the estimate.

If the scheme for generating the simulated values is to have iid samples, we
want

SE ≤ σg√
m

which gives

m ≥ σ2
g

SE2

where SE is the desired standard error and σ2
g = Var(g(X)).

There is the same potential problem in doing this as in a sample survey: σ2
g

is usually unknown. Sometimes you can guess. However there is a usually
simple solution in this situation. Do a small simulation (say 100 samples)
to estimate σ2

g and use this in the above formula.
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Note when choosing the desired SE, often people think about bounding
the relative standard error, i.e.

SE

E[g(X)]

People will often think about trying to get an answer within 1% or 0.1% say.
This often relates to the number of significant digits you have confidence
in. This approach fits into the original scheme by working with a rough
guess of E[g(X)]. If you don’t have a rough guess of this, use the small
simulation idea here to get one.
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Sampling Schemes

For the examples shown so far, they have either used Simple Random
Sampling or IID sampling from the desired distribution.

These may not be the best approaches as they be slow, inefficient (large
standard errors) or difficult to implement (distribution is hard to sample
from).

Instead we can modify the sampling scheme to avoid these problems. Two
possible approaches are

• Importance Sampling

• Markov Chain Monte Carlo (MCMC)
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Importance Sampling

Used for a number of purposes

• Variance reduction (smaller standard errors)

• Allows for difficult distributions to be sampled from

• Sensitivity analysis

• Reusing samples to reduce computational burden

Idea is to sample from a different distribution that picks points in
“important” regions of the sample space and is easy to sample from.

As before, want to estimate

E[g(X)] =
∫

g(x)fX(x)dx
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Instead of sampling from density (or
pmf) fX(x), sample from a different
distribution with density (or pmf)
hX(x).

Since we are sampling from the
“wrong” distribution, we have to
make adjustments in out estimator.
In the example plot to the right, this
setup will sample too many values
around 3 and not enough values
around 0.

Ef [g(X)] =
∫

g(x)fX(x)dx

=
∫

g(x)
fX(x)
hX(x)

hX(x)dx (*)

= Eh

[
g(X)

fX(X)
hX(X)

]

Importance Sampling 52



This suggests the following sampling scheme

1. Sample x1, x2, . . . , xm from hX(x)

2. Calculate weights

wi =
fX(xi)
hX(xi)

3. Estimate E[g(X)] by

µIS =
1
m

m∑

i=1

wig(xi) =
1
m

m∑

i=1

fX(xi)
hX(xi)

g(xi)

So instead of a regular average, this estimator is a weighted average.

Points that occur more often under hX(x) than fX(x) get downweighted
and those that occur less often get upweighted.
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Based on (*), µIS is an unbiased estimate of E[g(X)] regardless of which
proposal distribution hX(x) is chosen, as long as hX(x) as the same support
as fX(x), i.e.,

fX(x) > 0 implies that hX(x) > 0

This implies any value that you want to sample under fX(x) you must be
able to sample under hX(x)

Note that hX(x) > 0 can be allowed to occur when fX(x) = 0, though
doing this tends to be inefficient, as you can generate samples you don’t
really need (wi = 0). However there can be times when you want to do
this.
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Example: Simulating to Calculate Small Probabilities

Suppose Z ∼ N(0, 1) and we are interested in

P [Z ≥ a] = E[I(Z ≥ a)] = Φ(−a) = pa

for large values of a > 0 (say 5 which has P [Z ≥ 5] = 2.87× 10−07)

Motivation: This was based on probability calculations involved in Genetic
Linkage analysis. The distribution of the quantities of interest converge in
distribution to a N(0, 1) as the size of the families goes to ∞. However
for the family sizes of interest, the normal approximation is extremely poor
so it was decided to use simulation to calculate the necessary probabilities.
The following argument suggests how the pedigrees need to be simulated
in an efficient sampler.
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Naive approach:

Sample z1, z2, . . . , zm from a N(0, 1) and calculate

p̂a =
1
m

m∑

i=1

I(zi ≥ a)

The variance of this estimator is

Var(p̂a) =
pa(1− pa)

m

Note that virtually all samples will have zi < a. In fact you will only expect
to see a zi ≥ a about every 3.5 million draws.
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Importance sampling approach:

The lack of extreme zis in the naive approach makes it inefficient. So lets
try to get some zis around a.

Sample x1, x2, . . . , xm from N(a, 1) and calculate

p̂aIS =
1
m

m∑

i=1

I(zi ≥ a)
φ(xi)

φ(xi − a)

The variance of this estimator is

Var(p̂aIS) =
ea2

p2a − p2
a

m
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It can be shown that

Var(p̂a)
Var(p̂aIS)

> 1

for any a > 0 (importance sampling always does better). If a = 5

Var(p̂a)
Var(p̂aIS)

= 614475.8

so 1 importance sample draw is worth over 600,000 draws from the N(0, 1)
distribution.

Note that this procedure can be improved slightly by sampling from a
distribution with a mean slightly larger than a. The optimal choice of the
mean b satisfies

2b =
φ(a + b)

Φ(−a− b)
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For the genetics problem mentioned, it implies that we need to simulate
pedigree data with the gene located a bit closer to the marker than the
data suggests it is.
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Markov Chain Monte Carlo (MCMC)

Instead of generating independent samples, generate dependent samples via
a Markov Chain

θ0 → θ1 → θ2 → θ3 → . . .

where the stationary distribution of the chain is the desired distribution
p(θ).

The Markov Chain is defined by a transition distribution Tt(θt|θt−1), which
describes the possible moves when you are in state θt−1

Useful for a wide range of problems.

Popular for Bayesian analyses, but it is a general sampling procedure. For
example, it has been used for calculating likelihoods in genetic linkage
analysis.
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Gibbs Sampling

One example of MCMC

Idea: Break the random variable θ in k pieces (θ = {θ1, θ2, . . . , θk}) and
sample the pieces sequentially. (The pieces θi could be univariate or
multivariate.)

1. Initialize chain: θ0 = {θ0
1, θ

0
2, . . . , θ

0
k} by some mechanism.

2. At time t, sample θt = {θt
1, θ

t
2, . . . , θ

t
k} by

• Step 1: sample θt
1 ∼ p(θ1|θt−1

2 , . . . , θt−1
k )

• Step 2: sample θt
2 ∼ p(θ2|θt

1, θ
t−1
3 . . . , θt−1

k )

• Step j: sample θt
j ∼ p(θj|θt

1, . . . , θ
t
j−1, θ

t−1
j+1 . . . , θt−1

k )

• Step k: sample θt
k ∼ p(θk|θt

1, . . . , θ
t
k−1)
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Under certain regularity conditions, the realizations θ1, θ2, θ3, . . . form a
Markov chain with stationary distribution p(θ). Thus the realizations can
be treated as dependent samples from the desired distribution.

Example: Nuclear Pump Failure

Gaver & O’Muircheartaigh (Technometrics, 1987)

Gelfand & Smith (JASA, 1990)

Observed 10 nuclear reactor pumps and counted the number of failures for
each pump.

Importance Sampling 62



Pump Failures (si) Observation Time (ti) Observed Rate (li)

1 5 94.320 0.053

2 1 15.720 0.064

3 5 62.880 0.080

4 14 125.760 0.111

5 3 5.240 0.573

6 19 31.440 0.604

7 1 1.048 0.954

8 1 1.048 0.954

9 4 2.096 1.910

10 22 10.480 2.099

Observation time in 1000’s of hours

Observed Rate = # Failure / 1000 hours
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Want to determine the true failure rate for each pump with the following
hierarchical model

si|λi
ind∼ Poisson(λiti)

λi|β iid∼ Gamma(α, β)

β ∼ Gamma(γ, δ)

Note that this is a slightly different parameterization but the same model
that Gelfand and Smith used.

In this example, α will be assumed to be a fixed parameter. We could put a
prior on it, or as Gelfand and Smith do, estimate it from the data and take
and empirical Bayes solution.
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Want to determine the following posterior distributions

1. p(λi|s) for each pump

2. p(β|s) and p
(

1
β |s

)

Note the both sets of these distributions are difficult to get analytically. It
is possible to show that

p(λ|s) ∝ 1
(δ +

∑
λi)10α+γ

∏ tα+si
i λα+si−1e−λiti

Γ(α + si)

Note that the λ’s are correlated and trying to get the marginal for each
looks to be intractable analytically.

Instead lets run a Gibbs sampler to determine p(λ, β|s) from which we can
get the desired posteriors.
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One possible Gibbs scheme is

• Step 1: sample λ1 ∼ p(λ1|λ(−1), β, s)

• Step 2: sample λ2 ∼ p(λ2|λ(−2), β, s)

· · ·

• Step 10: sample λ10 ∼ p(λ10|λ(−10), β, s)

• Step 11: sample β ∼ p(β|λ, s)

where λ(−j) = {λ1, . . . , λj−1, λj+1, . . . , λ10}
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Need the following conditional distributions

λj ∼ p(λj|λ(−j), β, s) = p(λj|β, sj)

= Gamma(α + sj, β + tj)

β ∼ p(β|λ, s) = p(β|λ)

= Gamma(γ + 10α, δ +
∑

λ)

These can be gotten from the joint distribution by including only the terms
in the product that contain the random variable of interest

p(s, λ, β) =

(
10∏

i=1

(λiti)sie−λiti

si!

)(
10∏

i=1

λα−1
i βαe−λiβ

Γ(α)

)
βδ−1γδe

−βδ

Γ(γ)

Importance Sampling 67



Equivalently, you can do this by looking at the graph structure of the model
by only including terms that correspond to edges joining to the node of
interest. (e.g. for β, which edges connect with the node for β.)

In these graphs, for every factor of the joint distribution, the nodes for the
variables in the factor are joined.

p(s, λ, β) =

(
10∏

i=1

(λiti)sie−λiti

si!

)(
10∏

i=1

λα−1
i βαe−λiβ

Γ(α)

)
βδ−1γδe

−βδ

Γ(γ)
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Example Run:

The following values were used for the prior parameters

α = 1.8 δ = 1 γ = 0.1

n = 10000 imputations were generated after a burn in of 1000 imputations.

The starting values for the chain were β0 = l̄ = 1.33, λi = li.
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Pump li ti E[λi|s] Med(λi|s) SD(λi|s)
1 0.0530 94.320 0.0700 0.0667 0.0267

2 0.0636 15.720 0.1553 0.1368 0.0935

3 0.0795 62.880 0.1044 0.0991 0.0401

4 0.1113 125.760 0.1231 0.1204 0.0307

5 0.5725 5.240 0.6283 0.5861 0.2914

6 0.6043 31.440 0.6167 0.6071 0.1343

7 0.9541 1.048 0.8298 0.7188 0.5379

8 0.9541 1.048 0.8316 0.7178 0.5302

9 1.9083 2.096 1.3020 1.2150 0.5744

10 2.0992 10.480 1.8358 1.8087 0.3873

E

[
α

β
|s

]
= 0.7929
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E[β|s] Med(β|s) SD(β|s)
2.4678 2.3970 0.7074
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