
Outcomes, Events, and Sample Spaces
Counting Methods

Statistics 110

Summer 2006

Copyright c©2006 by Mark E. Irwin



Outcomes, Events, and Sample Spaces

When dealing with probability, we need to determine what we want to
assign probabilities to

• Elementary Outcome: A complete result of the experiment under
consideration. Also known as an outcome, simple event, or sample
point.

• Sample Space: The set of all possible outcomes of the experiment

Examples:

1. Rolling a single die example: Ω = {1, 2, 3, 4, 5, 6}.
2. Radioactive decay: Ω = {0, 1, 2, . . .}.
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3. Mendel’s peas:

Ω =
{

(x1, x2, x3, x4) : xi ≥ 0 &
∑

xi = 560
}

= {(560, 0, 0, 0), (559, 1, 0, 0), (559, 0, 1, 0), . . .} .

There happen to be
(
563
3

)
= 29583961 different outcomes in Ω.

4. SST anomaly forecasts (at a single location): Ω = (−∞,∞).

5. Flip a coin three times: Ω = {HHH, HHT, HTH, HTT, THH, THT,
TTH, TTT}

Note that sometimes its easier to include events may not be possible.
For example, the SST temperature anomalies really can’t get outside a
fairly small range. As we will see later on, adding outcomes with zero
probability isn’t a problem.
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• Event: An outcome or a set of outcomes. A subset of the sample space.
A statement about the outcome of the experiment.

Note that events are usually denoted by capital letters.

Examples:

1. Rolling a single die:
(a) Roll is even — A = {2, 4, 6}
(b) Roll is greater than 4 — B = {5, 6}

2. Flip a coin three times:
(a) All flips are the same — C = {HHH, TTT}
(b) At least two heads — D = {HHT, HTH, THH, HHH}

3. Flip a coin twice and roll a die once:
(a) At least one tail and roll is 6 — E = {HT6, TH6, TT6}
(b) Two tails — F = {TT1, TT2, TT3, TT4, TT5, TT6}
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Combining Events

• Intersection (and): The set of all outcomes that occur in all of the sets

A ∩B = B ∩A (Commutative)
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If A = {1, 2}, B = {2, 3, 4} and C = {3, 4}, then

A ∩B = {2}
A ∩ C = φ (Empty Set)

B ∩ C = {3, 4}

If A ∩B = φ, the events A and B are said to be disjoint.
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• Union (or): The set of all outcomes that occur in at least one of the sets

A ∪B = B ∪A (Commutative)
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If A = {1, 2}, B = {2, 3, 4} and C = {3, 4}, then

A ∪B = {1, 2, 3, 4}
A ∪ C = {1, 2, 3, 4}
B ∪ C = {2, 3, 4}

Note that “or” means one, or the other, or both (not exclusive or).
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• Complement: The set of outcomes that don’t occur in the event

If A = {1, 2}, B = {2, 3, 4} and Ω = {1, 2, 3, 4, 5}, then

Ac = {3, 4, 5}
Bc = {1, 5}
Ωc = φ
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Associative Laws

• (A ∩B) ∩ C = A ∩ (B ∩ C)
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• (A ∪B) ∪ C = A ∪ (B ∪ C)
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Distributive Laws

• (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C)

• (A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C)
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DeMorgan’s Laws

• (A ∪B)c = Ac ∩Bc

• (A ∩B)c = Ac ∪Bc

Outcomes, Events, and Sample Spaces 12



Counting Methods

In some problems (such as rolling a fair die), each of the outcomes is equally
likely. Thus, if there are N possible outcomes in the the sample space, each
outcome has probability

p0 =
1
N

For example when placing 3 labelled balls in 3 boxes, there are 27 different
possible outcomes (= 3× 3× 3), so

p0 =
1
27
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In such equally likely cases, the probability of an event A, denoted by P [A]
satisfies

P [A] = (Number points in A)× p0

=
Number points in A

Number points in Ω

So for A = {All balls end up in same box} and B = {There is exactly 1
empty box}, the probabilities are

P [A] =
3
27

=
1
9
; P [B] =

18
27

=
2
3

So for many problems, finding a probability reduces to figuring out how
many possible outcomes satisfy the condition of interest.
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There are two settings of interest that many counting problems fall into,
ordered samples (e.g. a head followed by a tail is different from a tail
followed by a head) and unordered sampling (e.g. all that matters is that
there is a head and a tail).

• Ordered samples: Given a population of n elements {a1, a2, . . . , an}
select an ordered sample or size r.

1. Sampling with replacement:

The sample space has n× n× . . .× n = nr outcomes.

Two possible samples of size 3 (when n = 7) are {a6, a4, a1} and
{a3, a5, a3}.
An example of this would be rerolling a die r times. For example
rolling a die twice has 36 different possibilities (assuming you pay
attention to the order).
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2. Sampling without replacement:

The sample space has (n)r
def= n(n−1)(n−2) . . . (n− r +1) = n!

(n−r)!
outcomes.

A possible sample of size 3 (when n = 7) is {a6, a4, a1}. The sample
{a3, a5, a3} is not possible under this sampling scheme.

Special case: there are n! def= n(n − 1) . . . 2 × 1 = (n)n different
orderings (permutations) of n elements.

So when sampling r items from a population of size n (with
replacement), the probability of no repetition in our sample is

P [No Repeats] =
(n)r

nr
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Examples:

(a) An elevator starts with 5 passengers, with 7 floors where the
passengers could get off. What’s the chance that everybody gets
off at a different floor? What the chance with 7 passengers? 8
passengers?

Set n = 7 and r = 5. Then

P [No Repeats] =
(7)5
75

=
2520
16807

= 0.150

For r = 7,

P [No Repeats] =
7!
75

= 0.00612

For r = 8,
P [No Repeats] = 0
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(b) What is the chance that all r students in a class have different
birthdays? How big does r need to be for this probability to be less
than 0.5? (An equivalent statement is how big does r need to be
for the probability that at least two people have the same birthday
is at least 0.5?)

Set n = 365 (We’ll ignore leap day)

P [Different Birthdays] =
(365)r

365r

=
365
365

× 364
365

× . . .× 365− r + 1
365

For the second question, n needs to be at least 23 as

P [Different Birthdays|r = 22] = 0.524

P [Different Birthdays|r = 23] = 0.493
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• Unordered samples (Subsets)

Given a population of size n, the number of subsets of size r(0 ≤ r ≤ n)
is (

n

r

)
def=

(n)r

r!
=

n!
r!(n− r)!

Proof: Each unordered sample corresponds to r! ordered samples.

Example: What is the probability that a poker hand contains 5 different
face values (e.g. 2, 6, 9, 10 ,K)

– The sample space contains
(
52
5

)
different hands

– The number of different possible hands in our event is

(
13
5

)

︸ ︷︷ ︸
choice of 5 face cards

× 4× 4× 4× 4× 4︸ ︷︷ ︸
choice of suit for each card
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– These give the probability

P =

(
13
5

)
45

(
52
5

) = 0.5071

A subset of size r is equivalent to partitioning the population into 2
parts, one with r1 = r points and the other with r2 = n− r points.

The number of partitions of n elements into k parts, with the 1st
part containing r1 elements, the 2nd with r2 elements, the 3rd with r3

elements, etc is

(
n

r1 r2 . . . rk

)
def=

n!
r1!r2! . . . rk!

Note that r1 + r2 + . . . + rk = n; ri ≥ 0.
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Proof:

(
n

r1

)(
n− r1

r2

)
· · ·

(
n− r1 − r2 − . . .− rk−1

rk

)

=
n!

r1!(n− r1)!
(n− r1)!

r2!(n− r1 − r2)!
. . .

(n− r1 − r2 − . . .− rk−1)!
rk!(n− r1 − r2 − · · · − rk)!

Example: How many ways can we assign 12 programmers to three
projects where Project A needs 3 people, Project B needs 2 people,
Project C needs 4 people, and the remaining 3 people are held in reserve.

Partition 12 into 4 parts A, B, C, Reserve

# Partitions =
(

12
3 2 4 3

)
= 277200
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• Indistinguishable Balls

Consider the distribution of J balls into K cells (numbered 1 to K).

– Distinguishable balls: sample space has K × K × . . . × K = KJ

outcomes.

– Indistinguishable balls: any outcome looks like
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Theorem. # of distributions of J indistinguishable balls into K cells
is

#
{

(x1, x2, . . . , xK) : xi ≥ 0 &
∑

xi = J
}

=
(

J + K − 1
J

)
=

(
J + K − 1

K − 1

)
.

Remark: This is the number of terms in the summation of the
multinomial theorem.
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Proof.

Need to decide which of the J + K − 1 contain the J balls which is
just

(
J+K−1

J

)
. 2

The number of different sample points in the Mendel example is given
by this formula where J = 560 and K = 4.
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