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Probability Measures

A probability measure on a sample space Ω is a function P from subsets
of Ω to the real numbers satisfying the following axioms:

1. P [Ω] = 1 (Boundedness)

2. If A ⊂ Ω, then P [A] ≥ 0 (Positivity)

3. If A1 and A2 are disjoint (i.e. A1 ∩A2 = φ), then

P [A1 ∪A2] = P [A1] + P [A2]
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More generally, if A1, A2, . . . , An, . . . are disjoint then

P

[ ∞⋃

i=1

Ai

]
=

∞∑

i=1

P [Ai]

This is known as countable additivity. Finite additivity (i.e. n < ∞) is a
special case of this.

The first axiom states that the chance of seeing one of the possible outcomes
is 1. This matches with the equally likely cases discussed earlier where

P [Ω] =
# outcomes in Ω
# outcomes in Ω

= 1

The second axiom states that probabilities are non-negative. Again this
matches with the equally likely case from earlier since

0 ≤ # outcomes in A ≤ # outcomes in Ω
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Kolmogorov (1933) found that all probability calculations and theorems can
be obtained by the systematic application of these three axioms.

These serve as axioms for the mathematical development of all probability
theory, including:

• Continuous random variables

• Limit theorems

• Stochastic processes
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From these three axioms, we can get a number of other useful properties

1. P [Ac] = 1− P [A] (Complement Rule)

P [A] + P [Ac] = P [Ω] = 1

2. P [φ] = 0
P [φ] = P [Ωc] = 1− P [Ω] = 0
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3. If A ⊂ B then P [A] ≤ P [B]

B = (A ∩B) ∪ (Ac ∩B)

P [B] = P [A ∩B] + P [Ac ∩B] = P [A] + P [Ac ∩B] ≥ P [A]
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4. P [A ∪B] = P [A] + P [B]− P [A ∩B] (Addition Rule)

A ∪B = (A ∩Bc) ∪ (Ac ∩B) ∪ (A ∩B)

P [A] = P [A ∩B] + P [A ∩Bc]

P [B] = P [A ∩B] + P [Ac ∩B]
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The addition rule can be extended to an arbitrary number of events as
follows. For a collection of events A1, A2, . . . , An, (n possibly ∞) let

pi = P [Ai] S1 =
∑

i pi

pij = P [Ai ∩Aj] S2 =
∑

i<j pij

pijk = P [Ai ∩Aj ∩Ak] S3 =
∑

i<j<k pijk

Then

P

[
n⋃

i=1

Ai

]
= S1 − S2 + S3 − S4 . . .± Sn
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Proof. Consider and outcome e ∈ ⋃n
i=1 An and suppose that e is in

Ai1, Ai2, . . . , Aik but not any other Ai.

(In this case e is in A1, A2, and A3.) Let α = P [{e}] and consider the
contribution of α to the RHS.

• In S1, α is counted
(
k
1

)
times.

• In S2, α is counted
(
k
2

)
times.

• In Sk, α is counted
(
k
k

)
times.
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Hence α is counted in the RHS

m =
(

k

1

)
−

(
k

2

)
+

(
k

3

)
− . . .±

(
k

k

)

times. From the binomial expansion

0 = (1− 1)k = 1−
{(

k

1

)
−

(
k

2

)
+

(
k

3

)
− . . .±

(
k

k

)}

so m is 1. 2

Theorem. Binomial Theorem

(x + y)n = xn +
(

n

1

)
xn−1y +

(
n

2

)
xn−2y2 + . . . + yn
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Example: The matching problem

Two equivalent decks of N distinct cards are each randomly ordered. Then
they are matched against each other. What is the probability there are no
matches (call it p0).

• If N is 3,

so p0 = 1
3.

• What if N is 30,000?

Deck 1 : 1 2 3 . . . N

Deck 2 : x1 x2 x3 . . . xN
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We can assume without loss of generality (WLOG) that Deck 1 is always in
numerical order. (If it isn’t, do the same switches to both decks so that the
first ends up in numerical order.) Also assume that each possible outcome
for deck 2 has the same probability (= 1

N !).

P [No Match] = 1− P [At least one match]

Let Ai be the event {match at position i} = {xi = i}.
Then

1.

P [At least one match] = P

[
N⋃

i=1

Ai

]

= S1 − S2 + S3 − S4 . . .± SN

2. P [AiAj] = P [A1A2] = (N−2)!
N ! , P [AiAjAk] = P [A1A2A3] = (N−3)!

N ! , etc.
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So

S1 =
∑

i

P [Ai] = NP [A1] = N
1
N

= 1

S2 =
∑

i<j

P [AiAj] =
(

N

2

)
P [A1A2] =

(
N

2

)
(N − 2)!

N !
=

1
2!

S3 =
∑

i<j<k

P [AiAjAk] =
(

N

3

)
P [A1A2A3] =

(
N

3

)
(N − 3)!

N !
=

1
3!

Hence

P [At least one match] = 1− 1
2!

+
1
3!
− . . .± 1

N !

P [No match] =
1
2!
− 1

3!
+ . . .± 1

N !
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Recall that

ex = 1 + x +
x2

2!
+

x3

3!
+ . . .

e−1 = 1− 1 +
1
2!
− 1

3!
+ . . .

so that P [No match] ≈ e−1 ≈ 0.367.
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Inequalities

Sometimes, exact probability statements aren’t needed. Instead bounds are
good enough. The following are a couple of useful ones

• Boole’s inequality

P [A1 ∪A2 ∪ . . .] ≤ P [A1] + P [A2] + . . .

• Bonferroni’s inequality

P [A1 ∩A2 ∩ . . . ∩An] ≥ P [A1] + P [A2] + . . . + P [An]− (n− 1)

Boole’s inequality is useful in making statements about rare events. If
events {A1, A2, . . . , An} are unlikely individually, then the chance that any
of them occur is still unlikely.
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For example, suppose that each of us bought 1 lottery ticket for the next
draw in Mass Millions (Pick 6 from 1 to 49). P [I win] = 1

13,983,816 (or

anybody else). If there are 14 people here,

P [At least one of us wins] ≤ 14
13, 983, 816

(≈ 1
1, 000, 000

)

Bonferroni’s inequality is often useful in making statement about common
events. If events {A1, A2, . . . , An} are all likely individually, then the chance
that all of them occur is still likely, though not as likely as each individually
(as

⋂
Ai ⊂ Aj for all j).

For example, a common statistical inference technique is the use of
Confidence Intervals (CI). The procedure for generating CIs has the property
that the P [True parameter value in interval] = C. Often in an analysis
there are multiple intervals being generated. Suppose that there are n of
them and let

Ai = Interval i contains the true parameter value

Probability Measures 15



What is the probability that all intervals contain the true parameter values
assuming that n = 10, and C = 0.95 (a popular choice).

P

[
n⋂

i=1

Ai

]
≥ 10× 0.95− (10− 1) = 0.5

So there could be a 50:50 chance of making at least one incorrect statement.

How big does C need to be for so that the probability that all intervals
contain the true value is at least 0.95?

Need 10C − 9 ≥ 0.95 which implies C ≥ 9.95
10 = 0.995

Also Bonferroni’s inequality is sometimes written in the form

P

[
n⋂

i=1

Ai

]
≥ 1−

n∑

i=1

P [Ac
i ]

(to prove just replace P [Ai] with 1− P [Ac
i ] in the original formulation)
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How to define a probability measure?

The three axioms gives us a way of defining probability measures for
countable (& finite) sample spaces (excludes cases such as Ω = [0, 1]).
Assume that B1, B2, . . . are the elementary outcomes of the experiment.
Then any set of numbers pi = P [Bi] satisfying

1. 0 ≤ pi ≤ 1

2.
∑∞

i=1 pi = 1

gives a valid probability measure.
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Example: Tossing a biased coin. Assume that the probability of a head on
each flip is 2

3. Flip the coin until a tail appears and let X be the flip number
when this occurs (Ω = {1, 2, 3, . . .}). Then P [X = i] satisfies (assuming
independence)

P [X = i] =
1
3

(
2
3

)i−1

; i = 1, 2, . . .

Since P [X = i] satisfies the 2 conditions (you should check this) it defines
a valid probability measure.

However any other set of {pi} satisfying the 2 conditions could also be used
as a probability model describing flipping this biased coin, though it probably
would be a bad description (as it probably will violate the probability of
getting a head on each flip of 2

3.
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