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Continuous Random Variables

When defining a distribution for a continuous RV, the PMF approach won't
quite work since summations only work for a finite or a countably infinite
number of items. Instead they are based on the following

Definition: Let X be a continuous RV. The Praobability Density Function
(PDF) is a function f(x) on the range of X that satisfies the following
properties:
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For any a < b, the probability that Pla < X < b] is the area under the
density curve between a and b.
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Note that f(a) is NOT the probability of observing X = a as

P[X:a]z/af(a:)dazz()

Thus the probability that a continuous RV takes on any particular value is
0. (While this might seem counterintuitive, things do work properly.) A
consequence of this is that

Pla< X <b=Pla<X<b=Pla<X <b=Pla<X <}

for continuous RVs. Note that this won't hold for discrete RVs.
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Note that for small ¢, if f is continuous at x

T+5
Px—gngqug]:/x fluw)du ~ f(x)o

£(x)

So the probability of seeing an outcome in a small interval around x is
proportional to f(x). So the PDF is giving information of how likely an
observation at x is.
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As with the PMF and the CDF for discrete RVs, there is a relationship
between the PDF, f(x), and the CDF, F'(x), for continuous RVs

Flz) = / f(u

f(z) = F'(x)
assuming that f is continuous at x.

Based on this relationship, the probability for any reasonable event describing
a RV can determined with the CDF as the probability of any interval satisfies

Pla < X <b|=F(b) — F(a)

Note that this is slightly different than the formula given on page 47. The
above holds for any RV (discrete, continuous, mixed). The form given on
page 47

Pla < X <b|=F(b) — F(a)

only holds for continuous RVs.
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Example: Uniform RV on [0,1] (Denoted X ~ U(0,1)) 0

What most people think of when we say pick a number
between 0 and 1. Any real number in the interval is 5
possible and equally likely, implying that any interval of
length h must have the same probability (which needs
to be h). The PDF for X then must be 0.5

f(x)_{ 1 0<z<1
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PDF of U(0,1)
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The CDF for a U(0,1) is

F(x)
0.0 02 04 06 08 1.0

0 =<0
Flz)=4q = 0<z<1
1 x>1
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One way to think of the CDF is that you give a value of the RV and it gives
a probability associated with it (i.e. P|X < x|). It can also be useful to go
the other way. Give a probability and figure out which value of the RV is
associated with it.

Lets assume that F' is continuous and strictly increasing in some interval [
(i,e. =0 to the left of I and F' = 1 to the right of I) (note I might
be unbounded). Under these assumptions the inverse function I~ is well
defined (x = F~Y(y) if F(z) = y).

Definition: The pth Quantile of the distribution F' is defined to be the
value z,, such that

F(zy)=p or PIX <z,)=p

Under the above assumptions z, = F'~1(p).
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Note: Defining quantiles for discrete distributions is a bit tougher since the
CDF doesn't take all values between 0 and 1 (due to the jumps)

CDF for number of heads in 3 flips

=X]

P[X <
0.0 02 04 06 08 1.0

X (number of heads)

The definition above can be extended to solving the simultaneous equations

PX <xzp)>p and P[X <z, <p
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This can be though of as the place where the CDF jumps from below p to
above p

CDF for number of heads in 3 flips
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Expected Values and Moments

Definition: The Expected Value of a continuous RV X (with PDF f(xz))
IS

assuming that [ |z|f(z)dz < oco.

The expected value of a distribution is often referred to as the mean of the
distribution.

As with the discrete case, the absolute integrability is a technical point,
which if ignored, can lead to paradoxes.

For an example of a continuous RV with infinite mean, see the Cauchy
distribution (Example G, page 114)
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As with the discrete case, E|X]| can be thought as a measure of center of
the random variable.

For example, when X ~ U(0,1)

PDF of U(0,1)

f(x)
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Not surprisingly, expectations of functions of continuous RVs satisfy the
expected relationship

For example, if X ~ U(0,1),

! 1
E[X?] :/ ridr = =
0 3

This is often easier than figuring out the PDF of Y = ¢g(X) and applying
the definition as there is often some work to figure out the PDF of Y.
(Which we will do later, it does have its uses)

As with discrete RVs, g(FE|X]) # E[g(X)] in most cases. However, with a
linear transformation ¥ = a + b X

Ela +bX] = a + bE[X]
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Spread of a RV

g o] g ° ]
§_T T T —1 §_| T T
-2 -1 1 2 -2 -1 0
X
:z: \-1 0 1 7 \-2 1 0 1 2
1 1 1 1 2 3 2 1
P(x)‘g 3 3 P(@“)‘@ 5 5 5 39

Expected Values and Moments

15



f(x)
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f(x)
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05+% —2<x2<0
flx)=4 05—-% 0<z<2
0 Otherwise

flz) =

0.0 —1<x<1
0 Otherwise

\

All these distributions have E[X] = 0 but the right hand side in each case
has a bigger spread. A common measure of spread is the Standard Deviation
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Definition: Let 4 = E[X], then the Variance of the random variable X is

Var(X) = E[(X — )’

provided the expectation exists.

The Standard Deviation of X is

SD(X) = /Var(X)

For a discrete RV,

Var(X) = Z(ﬂfz — p)°p(z;)

For a continuous RV
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The variance measures the expected squared difference of an observation
from the mean. While the interpretation of the standard deviation isn't
quite easy, it can be thought of a measure of the typical spread of a RV.

It can be shown that, assuming that the variance exists,
Var(X) = E[X?] — (E[X])’

This form is often useful for calculation purposes.

Notation: The variance is often denoted by o2 and the standard deviation
by o.
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For the examples
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Var(X) = (=1 -0’2+ (0= 0’3 + (1-0)*3 = 2
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7 056 —1<zx<]1]
| f(z) = .
0 Otherwise

f(x)
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What is the effect of a linear transformation (Y = a + bX) on the variance
and standard deviation?

Var(a + bX) = b*Var(X)  SD(a+ bX) = |b|SD(X)

These two results are to be expected. For example, if two possible X values
differ by d = |x1 — x|, the corresponding Y values differ by |b|d, suggesting
that we want the standard deviation to scale by a factor of |b|. Since the
variance measures squared spread, it needs to scale by a factor of b2.

The factor a not having an effect also makes sense. Adding a to a random
variable shifts the location of its distribution, but doesn’'t changes the
distance between corresponding pairs of points.
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