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Common Continuous Distributions

• Uniform

• Exponential

• Normal

• Gamma

• Cauchy
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Uniform Distributions

This distribution describes events that are equally likely in a range (a, b).
As mentioned before, it is what people often consider as a random number.

The PDF for the for the uniform distribution (U(a, b)) is

f(x) =
1

b− a
; a ≤ x ≤ b

The CDF is

F (x) =





0 x < a
x−a
b−a a ≤ x ≤ b

1 x > b

The first two moments of the uniform are

E[X] =
a + b

2
; Var(X) =

(b− a)2

12
; SD(X) =

√
(b− a)2

12
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Exponential Distribution

The exponential distribution is often used to describe the time to an event.

The PDF for the for the exponential distribution (Exp(λ)) is

f(x) = λe−λx; x ≥ 0

The CDF is

F (x) =

{
1− e−λx x ≥ 0
0 x < 0

The first two moments of the exponential are

E[X] =
1
λ
; Var(X) =

1
λ2

; SD(X) =
1
λ
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The exponential distribution has an interesting property. It is said to be
memoryless. That is, it satisfies

P [T > t + s|T > s] =
P [T > t + s and T > s]

P [T > s]

=
P [T > t + s]

P [T > s]
=

e−λt+s

e−λs
= e−λt

Continuous Distributions 5



So the chance that what we are observing survives another t units of time
doesn’t depend on how long we have observed it so far.

This property limits where the exponential distribution can be used. For
example, we wouldn’t want to use it to model human lifetimes.

Another potential drawback is that the parameter λ describes the
distribution completely. Once you know this, you also know the standard
deviation, skewness, kurtosis, etc.

Even with these drawbacks, the exponential distribution is widely used.
Examples where it may be appropriate are

• Queuing theory - times between customer arrivals

• Times to relapse in leukemia patients

• Times to equipment failures

• Distances between crossovers during meiosis
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The parameter λ can often be thought of as a rate or a speed parameter.
The exponential distribution can be parameterized in terms of the mean
time to the event, µ = 1

λ. With this parameterization the PDF and CDF
are

f(x) = e−x/µ

µ ; x ≥ 0 F (x) =

{
1− e−x/µ x ≥ 0
0 x < 0

Continuous Distributions 7



Normal Distributions

The normal distribution is
almost surely the most common
distribution used in probability
and statistics. It is also referred
to as the Gaussian distribution,
as Gauss was an early promoter
of its use (though not the first,
who was probably De Moivre). It
is also what most people mean when they talk about bell curve. It is used
to describe observed data, measurement errors, and as an approximation
distribution (Central Limit Theorem).

The PDF for the for the normal distribution (N(µ, σ2)) is

f(x) =
1

σ
√

2π
e−(x−µ)2/2σ2
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The two parameters of the distribution are the mean (µ) and the variance
(σ2). A special case is the standard normal density which has µ = 0
and σ2 = 1 and its PDF is often denoted by φ(x). As we shall see, once
we understand the standard normal (N(0, 1)), we understand all normal
distributions.

The CDF for the normal distribution doesn’t have a nice form. The CDF
for the standard normal is often denoted by Φ(x) which is of the form

Φ(x) =
∫ x

−∞

1√
2π

e−u2/2du

The CDF for any other normal distribution is based on Φ(x).
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The normal distribution is an example of a symmetric distribution, with the
point of symmetry being the mean µ. For a symmetric distribution with
mean 0

P [X ≤ −x] = P [X ≥ x]

−4 −2 0 2 4−x x

For symmetry around µ, the relationship is

P [X ≤ µ− x] = P [X ≥ µ + x]
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Theorem. Let X ∼ N(µ, σ2) and let Y = aX + b. Then
Y ∼ N(aµ + b, (aσ)2).

Proof. If a > 0

FY (y) = P [Y ≤ y]

= P [aX + b ≤ y]

= P

[
X ≤ y − b

a

]

= FX

(
y − b

a

)

Similarly, if a < 0

FY (y) = P

[
X ≥ y − b

a

]

= 1− FX

(
y − b

a

)
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Therefore for a > 0

fY (y) =
d

dy
FX

(
y − b

a

)

=
1
|a|fX

(
y − b

a

)

Similarly you get the same result for a < 0.

Note that to this point, we haven’t made any assumptions about the
distribution of X. Any linear transformation of a RV gives this relationship.
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Now if X ∼ N(µ, σ2), then

fY (y) =
1

|a|σ√2π
exp

{
−1

2

(
y − b− aµ

aσ

)2
}

which is the density for a N(aµ + b, (aσ)2). 2

From this all normal density curves must
have the same basic shape and if X ∼
N(µ, σ2)

f(x) =
1
σ
φ

(
x− µ

σ

)

and

F (x) = Φ
(

x− µ

σ

)

One consequence of this, is that to get probabilities involving normal
distributions we only need a single function, or table.
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−4 −2 0 2 4

X ~ N(µ, σ2)
Z ~ N(0,1)

µ + z σ

z

If X ∼ N(µ, σ2), then

Z =
X − µ

σ
∼ N(0, 1)

The values Z are sometimes
referred to as the standard scores.

Suppose for example that blood
pressure (X) can be modelled
(approximately) by a normal
distribution with µ = 120 and
σ = 20.

If we are interested in the
P [X ≤ 140], this is the same as the P [Z ≤ 1] since

z =
140− 120

20
= 1

Table 2 of Rice gives the CDF of the standard normal.
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Note that this table
is actually taken from
Moore and McCabe’s
Introduction to the
Practice of Statistics.
However it is the same
as Table 2 in Rice.

z is the standard
normal variable. The
value of P for −z
equals 1 minus the
value of P for +z; for
example P for −1.62
equals 1 − 0.9474 =
0.0526.
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We can use the table to get the
following probabilities

• P [X ≤ 140]

P [X ≤ 140] = P [Z ≤ 1] = 0.8413

• P [X ≥ 95]

P [X ≥ 95] = P

[
Z ≥ 95− 120

20

]

= P [Z ≥ −1.25]

= 1− P [Z ≤ −1.25]
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Using the fact that P [Z ≤ −1.25] = 1− P [Z ≤ 1.25] (table flip),
P [Z ≤ −1.25] = 1− 0.8944 = 0.1056. Therefore

P [X ≥ 95] = 1− 0.1056 = 0.8944

60 80 100 120 140 160 180

0.
00

0
0.

01
0

0.
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0

Blood Pressure Density

Blood Pressure
f(

x)

95

• P [95 ≤ X ≤ 140]

P [95 ≤ X ≤ 140] = P [X ≤ 140]− P [X ≤ 95]

= P [Z ≤ 1]− P [Z ≤ −1.25]

= 0.8413− 0.1056 = 0.7357
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Gamma Distributions

The gamma distribution can be used model a wide range of non-negative
RVs. It has been used to model times between earthquakes, the size of
automobile insurance claims, rainfall amounts, plant yields.

The PDF for the for the gamma distribution (G(α, λ)) is

f(x) =
λα

Γ(α)
xα−1e−λx; x ≥ 0

The parameter α is the shape parameter of the gamma distribution and 1
λ

is the scale parameter.

The gamma distribution is a generalization of exponential distribution as
Exp(λ) = G(1, λ).
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The “normalization constant”

Γ(α) =
∫ ∞

0

xα−1e−xdx

is the Gamma function evaluated at α.

Some useful properties of the Gamma function are

1. Γ(1) =
∫∞
0

e−xdx = 1

2. Γ(α) = (α− 1)Γ(α− 1) (Prove by integration by parts).

3. If n is a positive integer, then Γ(n) = (n − 1)! (Direct consequence of
the first two facts).

4. Γ(0.5) =
√

π (Useful in showing that the variance for a normal is σ2).

The CDF of the gamma doesn’t have a nice closed form so you need tables
or a computer to find probabilities involving the gamma.
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The first two moments of the gamma are

E[X] =
α

λ
; Var(X) =

α

λ2
; SD(X) =

√
α

λ

Proof. Let X ∼ G(α, 1). Then

E[Xn] =
∫ ∞

0

xnxα−1e−x

Γ(α)
dx

=
∫ ∞

0

xα+n−1e−x

Γ(α)
dx

=
Γ(α + n)

Γ(α)

So

E[X] =
Γ(α + 1)

Γ(α)
=

αΓ(α)
Γ(α)

= α
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and

E[X2] =
Γ(α + 2)

Γ(α)
=

(α + 1)αΓ(α)
Γ(α)

= (α + 1)α

This implies that

Var(X) = E[X2]− (E[X])2 = α

Let Y = X
λ . Then Y ∼ G(α, λ) as

fY (y) =
λ(λy)α−1e−λy

Γ(α)

Thus

E[Y ] =
E[X]

λ
=

α

λ
; Var(Y ) =

Var(X)
λ2

=
α

λ2
;

2
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Beta Distributions

Beta distributions are useful for data that occur in fixed, finite intervals

The PDF for the for the beta distribution (Beta(α, β)) is

f(x) =
xa−1(1− x)b−1

β(a, b)
; 0 ≤ x ≤ 1

The function β(a, b) is known as the Beta function and is

β(a, b) =
∫ 1

0

xa−1(1− x)b−1dx

=
Γ(a)Γ(b)
Γ(a + b)
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Like many continuous distributions, the CDF for the beta does not have a
nice form and must be determined through tables or software.
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The first two moments of the Beta distribution are

E[X] =
a

a + b
; Var(X) =

ab

(a + b + 1)(a + b)2

Proof.

E[Xn] =
1

β(a, b)

∫ 1

0

xnxa−1(1− x)b−1

=
β(a + n, b)

β(a, b)

So

E[X] =
β(a + 1, b)

β(a, b)
=

Γ(a + 1)Γ(b)
Γ(a + b + 1)

Γ(a + b)
Γ(a)Γ(b)

=
a

a + b

and
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E[X2] =
β(a + 2, b)

β(a, b)
=

(a + 1)a
(a + b + 1)(a + b)

which implies

Var(X) =
a

a + b

(
a + 1

a + b + 1
− a

a + b

)
=

a

a + b

b

(a + b + 1)(a + b)

2
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Cauchy Distributions

The Cauchy distribution (also known as the Lorentzian distribution), is
often used for describing resonance behavior. It can also be used to describe
outliers in data sets. However it is more commonly used in probability and
statistics as a distribution that can be used for counter examples.

The PDF for the for the Cauchy distribution (C(µ, σ)) is

f(x) =
1

πσ
(
1 + (x−µ

σ )2
)

The CDF is

F (x) =
1
2

+
1
π
Arctan

(
x− µ

σ

)
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The Cauchy is another example of a location-scale distribution (the normal
is the first we’ve discussed). If X ∼ C(0, 1), then Y = µ + σX is C(µ, σ).
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The Cauchy distribution is known as a heavy tailed distribution. Its tails
decay to 0 very slowly.
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So slowly in fact, that the Cauchy has no moments. For all n ≥ 1,

∫ ∞

−∞
|xn|f(x)dx = ∞
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