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Common Continuous Distributions

e Uniform
e Exponential
e Normal
e Gamma

e Cauchy
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Uniform Distributions

This distribution describes events that are equally likely in a range (a,b).
As mentioned before, it is what people often consider as a random number.

The PDF for the for the uniform distribution (U(a, b)) is

1
fl@)=7—3 asz<b
The CDF is )
0 r < a
Flz)=4q 72 a<z<b
\1 T >b

The first two moments of the uniform are

_a+b
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Exponential Distribution

The exponential distribution is often used to describe the time to an event.

The PDF for the for the exponential distribution (Exp()\)) is

fl@) =X >0

The CDF is
1 — —A\T > ()
F(;C): € Xr =
0 r <0

The first two moments of the exponential are

EX]|=— Var(X)=—; SD(X)=

1
A2’ A
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Exponential Densities Exponential CDFs
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The exponential distribution has an interesting property. It is said to be
memoryless. That is, it satisfies

PT >t dT >
PT >t+s|T >s] = | 5 an il

P[T > s]
_ PT>t+s] _ e~ AbTS Y
P|T > s] e As
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So the chance that what we are observing survives another ¢ units of time
doesn’t depend on how long we have observed it so far.

This property limits where the exponential distribution can be used. For
example, we wouldn't want to use it to model human lifetimes.

Another potential drawback is that the parameter )\ describes the
distribution completely. Once you know this, you also know the standard
deviation, skewness, kurtosis, etc.

Even with these drawbacks, the exponential distribution is widely used.
Examples where it may be appropriate are

e Queuing theory - times between customer arrivals
e Times to relapse in leukemia patients
e Times to equipment failures

e Distances between crossovers during meiosis
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The parameter A\ can often be thought of as a rate or a speed parameter.
The exponential distribution can be parameterized in terms of the mean

time to the event, u = % With this parameterization the PDF and CDF

are

e—m/,u. 1 — 6_:1:/# i Z 0
a 0 x <0
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Normal Distributions

The normal distribution s

almost surely the most common  gs1s27a93¢s | %
distribution used in probability :
and statistics. It is also referred
to as the Gaussian distribution,
as Gauss was an early promoter A
of its use (though not the first, L fui = K& S8

who was probably De Moivre). It AR

is also what most people mean when they talk about bell curve. It is used
to describe observed data, measurement errors, and as an approximation
distribution (Central Limit Theorem).

ZEHN DEUTSCHE MARK

The PDF for the for the normal distribution (N (u,0?)) is

f(z) = —_e~(z=m?/20”

o\ 2m
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The two parameters of the distribution are the mean () and the variance
(0). A special case is the standard normal density which has p = 0
and 02 = 1 and its PDF is often denoted by ¢(z). As we shall see, once
we understand the standard normal (N(0,1)), we understand all normal
distributions.

The CDF for the normal distribution doesn’t have a nice form. The CDF
for the standard normal is often denoted by ®(x) which is of the form

S|
d(x) = / \/%e_“2/2du

The CDF for any other normal distribution is based on ®(x).
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N(u, 1) Densities

N(u, 1) CDFs
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The normal distribution is an example of a symmetric distribution, with the
point of symmetry being the mean u. For a symmetric distribution with
mean 0

P X < —z] = P|X > 1]

For symmetry around p, the relationship is

PX <pu—z]=PX > pu+x
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Theorem. Let X ~ N(u,0?) and letY = aX +b. Then

Y ~ N(ap + b, (ac)?).
Proof. If a > 0

Similarly, if a <0
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Therefore for a > 0

Similarly you get the same result for a < 0.

Note that to this point, we haven't made any assumptions about the
distribution of X. Any linear transformation of a RV gives this relationship.

Continuous Distributions 13



Now if X ~ N(u,o?), then

which is the density for a N(ap + b, (ac)?). O

From this all normal density curves must
have the same basic shape and if X ~
N(p,0?)

1 T — U
fla)=—6 (=
and
L — W
F =P
(x) -

One consequence of this, is that to get probabilities involving normal
distributions we only need a single function, or table.
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If X ~ N(u,0?), then

X —

o

/ =

~ N(0,1)

The values Z are sometimes
referred to as the standard scores.

Suppose for example that blood 2
X ~ N(u, %) H+z 0o
pressure (X) can be modelled 2 NO) ,

(approximately) by a normal | | |
distribution with ¢ = 120 and
o = 20.

If we are interested in the
P[X < 140], this is the same as the P[Z < 1] since

_140-120
==

zZ

Table 2 of Rice gives the CDF of the standard normal.
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Note that this table
is actually taken from
Moore and McCabe's
Introduction to the
Practice of Statistics.

However it is the same
as lTable 2 in Rice.

Table entry for z is
the area under the

standard normal curve
to the left of 7.

Probability

. TABLE A Standard normal probabilities (continued

z is the standard P ( )
) .00 01 02 03 04 05 .06 07 .08 .09
normal Varlable- The 5000 5040 5080  .5120 5160  .5199  .3239 5279 5319  .5359
5398 5438 5478 5517 5557 5596 5636  .5675 5714  .5753
value Of P fOI’ —Z 5793 5832 5871  .5910  .5948  .5987  .6026  .6064  .6103  .6141
] 6179 6217 6255 6293 6331  .6368  .6406  .6443 6480  .6517
6554 6591 6628 6664 6700  .6736  .6772 6808  .6844 6879
equals 1 minus the 6915 6950  .6985  .7019  .7054  .7088  .7123 7157  .7190  .7224
. 7257 7291 7324 7357 7389 7422 7454 7486 7517  .7549
value of P for “+2z; for 7580 7611 7642 7673 7704 7734 7764 7794 7823 7852
7881 7910 7939  .7967  .7995  .8023  .8051  .8078  .8106  .8133
example P for _162 i 8159 8186  .8212  .8238  .8264  .8289  .8315  .8340  .8365  .8389
1.0 8413 8438 8461  .8485 83508  .8531  .8554 8577  .8399 8621
_ 1.1 8643 8665 8686  .8708 8729 8749 8770 8790  .8810  .8830
equa|S 1 — 09474 — 1.2 8849 8869  .8888  .8907  .8925  .8944  .8962  .8980  .8997  .9015
1.3 9032 9049 9066  .9082 9099 9115 9131 9147 9162  .9177
00526 1.4 9192 9207 9222 9236  .9251 9265  .9279 9292 9306  .9319
1.5 9332 9345 9357  .9370  .9382  .9394  .9406  .9418  .9429  .9441
1.6 9452 9463 9474 9484 9495 9505 9515  .9525 9535  .9545
1.7 9554 9564 9573 9582 9591 9599 9608  .9616  .9625  .9633
1.8 9641 9649 9656  .9664 9671  .9678  .9686  .9693  .9699  .9706
1.9 9713 9719 9726 9732 9738  .9744 9750 9756  .9761  .9767
2.0 9772 9778 9783 9788  .9793  .9798 9803  .9808  .9812  .9817
2.1 9821 9826 9830  .9834 9838 9842 9846  .9850  .9854  .9857
22 9861 9864 9868  .9871  .9875  .9878  .9881  .9884  .9887  .9890
23 9893 9896 9898 9901  .9904  .9906  .9909  .9911  .9913  .9916
2.4 9918 9920 9922 9925 9927 9929 9931 9932 9934 9936
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We can use the table to get the
following probabilities

Blood Pressure Density

0.020

o P[X < 140]

f(x)

0.010

P[X < 140] = P[Z < 1] = 0.8413

0.000

e P[X > 95]

95 — 120
P[X295]:P[Zz 50

= P[Z > —1.25]
=1-P[Z < —1.25]

I T
60 80

T T T T I
9300 120 140 160 180

Blood Pressure
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Using the fact that P[Z < —1.25| =1 — P[Z < 1.25] (table flip),
P[Z < —1.25] = 1 — 0.8944 = 0.1056. Therefore

P[X > 95] =1 — 0.1056 = 0.8944

o P[95 < X < 140]

Blood Pressure Density

0.020
|

f(x)
0.010
|

0.000
|

I I L I I I I
60 80 9800 120 140 160 180

Blood Pressure

P[95 < X < 140] = P[X < 140] — P[X < 95]
— P[Z < 1] — P[Z < —1.25]
— 0.8413 — 0.1056 = 0.7357
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Gamma Distributions

The gamma distribution can be used model a wide range of non-negative
RVs. It has been used to model times between earthquakes, the size of
automobile insurance claims, rainfall amounts, plant yields.

The PDF for the for the gamma distribution (G(a, \)) is

The parameter « is the shape parameter of the gamma distribution and %
is the scale parameter.

The gamma distribution is a generalization of exponential distribution as
Exp(A) = G(1,N).
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The “normalization constant”
O
F(a):/ r* e Tdx
0

is the Gamma function evaluated at «.

Some useful properties of the Gamma function are
1. T(1) = [, e *dz =1
2. I'(a) = (a — 1)I'(ax — 1) (Prove by integration by parts).

3. If n is a positive integer, then I'(n) = (n — 1)! (Direct consequence of
the first two facts).

4. T(0.5) = /7 (Useful in showing that the variance for a normal is 02).

The CDF of the gamma doesn’t have a nice closed form so you need tables
or a computer to find probabilities involving the gamma.
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The first two moments of the gamma are

E[X]

84 84

=3 Var(X) = —; SD(X)

Proof. Let X ~ G(a,1). Then

So

a—1_—=x

E[X”]:/()wx"xF(;) d

@Dxa+n—1€—x
= dx
/0 I'(c)

Continuous Distributions
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and
EX? - F(g(;—)Q) _ (ax —1—F1()O(34)F(oz) _ (a+1)a

This implies that

Var(X) = E[X?] — (E[X])? = a

Let Y = Then Y ~ G(a, ) as

Continuous Distributions
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Beta Distributions

Beta distributions are useful for data that occur in fixed, finite intervals

The PDF for the for the beta distribution (Beta(a, 3)) is

a—1 1 — b—1
A )T

f@) =y 0<es

The function 3(a,b) is known as the Beta function and is

1
B(a,b) :/ N1 — 2) e
0

_ T(@T()
I'(a + b)
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Beta(a,a) Densities Beta(a,6) Densities

©
o - 0.8 — 1
— 1 1 — — 2
S 4| — 2 — 3
— 4 < — 4
_—6/ 8

f(x)
1.0 1
f(x)

3

I

0.0 0.5

00 02 04 06 08 10 00 02 04 06 08 10

Like many continuous distributions, the CDF for the beta does not have a
nice form and must be determined through tables or software.
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The first two moments of the Beta distribution are

a ab
EXl = V) = o e roe
Proof.
E[Xn] _ 6(;7 b)/o CIZnZL‘a_l(l . Cli)b_l
_ B(a + n,b)
B(a,b)
So
~ Bla+1,b) T(e+1)I'O)T(a+b)  a
Elx] B(a,b)  T(a+b+1)T(a)T'(d) a+b

and
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E[X? = =

which implies

B(a + 2,b)

(a+1)a

B(a,b)  (a+b+1)(a+b)

a—+ 1 a

a
Var(X) = p——>

(

a+b+1 a+b

)

a b

T a+b(at+b+1)(atb)

Continuous Distributions
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Cauchy Distributions

The Cauchy distribution (also known as the Lorentzian distribution), is
often used for describing resonance behavior. It can also be used to describe
outliers in data sets. However it is more commonly used in probability and
statistics as a distribution that can be used for counter examples.

The PDF for the for the Cauchy distribution (C'(u,0)) is

The CDF is

1 1 —
F(x) = =+ —Arctan (:1: ,u)

2 T o
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C(p, 1) Densities c(0, o) Densities
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The Cauchy is another example of a location-scale distribution (the normal
is the first we've discussed). If X ~ C(0,1), thenY = pu+0X is C(u, o).
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The Cauchy distribution is known as a heavy tailed distribution. lIts tails
decay to 0 very slowly.

Normal vs Cauchy

0.4

f(x)
0.3

0.2

0.1

0.0

So slowly in fact, that the Cauchy has no moments. For all n > 1,

/ e f(@)de = oo
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