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Functions of Random Variables

As we’ve seen before, if X ∼ N(µ, σ2), then Y = aX + b is also normally
distributed. However what is the distribution of X2, log(X), or sin(X)?
Similarly, what is the distribution of Y if X isn’t normal, say uniform?

In the discrete case, things are easily dealt with. If X has PMF pX(x), then
the PMF of Y = g(X) is

pY (y) =
∑

i:g(xi)=y

pX(xi)

that is, add up the probabilities for all x’s in the sample space that get
transformed to value y.

So the more difficult situation is the continuous RV case.
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As we saw last class, assume that RV X has density fX(x) and CDF FX(x).
Then if Y = aX + b,

FY (y) =





FX

(
y−b

a

)
a > 0

1− FX

(
y−b

a

)
a < 0

; fY (y) =
1
|a|fX

(
y − b

a

)

The idea behind the proof of this can be used to find the density and CDF for
the transformation Y = g(X) of any RV. Let the event A = {x : g(x) ≤ y}.
Then

FY (y) = P [Y ≤ y] = P [A] =
∫

A

fX(x)dx

This is like the discrete case. However instead of adding up all the
probabilities for all x’s that get transformed to y, we “add up” the
probabilities of all x’s that get transformed to something less than or equal
to y.
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Now often this can be written in terms of FX(x). For example, let
X ∼ U(−1, 1) and Y = X2, A = [−√y,

√
y]. Thus

FY (y) = P [X2 ≤ y] = P [−√y ≤ X ≤ √
y]

= FX(
√

y)− FX(−√y)

=
√

y
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Then the density of Y can be derived by differentiating the CDF.

fY (y) =
d

dy
FY (y) =

d

dy

√
y =

1
2
√

y
; 0 < y ≤ 1
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Theorem. Let X be a continuous RV with density fX(x) and let Y =
g(X) where g is a differentiable, strictly monotonic function on some
interval I. Suppose that f(x) = 0 if x is not in I. Then Y has the density
function

fY (y) = fX(g−1(y))
∣∣∣∣
d

dy
g−1(y)

∣∣∣∣
for y such that y = g(x) for some x and fY (y) = 0 if y 6= g(x) for any x
in I. Here g−1 is the inverse function of g; that is g−1(y) = x if y = g(x).

Proof. (Assuming that g is an increasing function)

FY (y) = P [g(X) ≤ y] = P [X ≤ g−1(y)] = FX(g−1(y))

Thus

fY (y) =
d

dy
FY (y) =

d

dy
FX(g−1(y))

= fX(g−1(y))
d

dy
g−1(y)
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(If g is a decreasing function, FY (y) = 1− FX(g−1(y)) and thus a couple
of extra minus signs pop up which leads to the absolute value in the general
case) 2
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Intuition behind the theorem:

To find fY (y) take a small interval
(y1, y2) around y. Find the
corresponding interval (x1, x2)
around x, i.e. solve

g(x) = y for x

g(x) = y1 for x1

g(x) = y2 for x2
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Then P [Y ∈ (y1, y2)] = P [X ∈ (x1, x2)], so

fY (y)(y2 − y1) ≈ fX(x)(x2 − x1)

or

fY (y) ≈ fX(x)
∆x

∆y

The transformation g changes the scale of measurement. To keep the
probabilities the same, which is needed since both are describing the same
event, we must account for this change of scale. As we know from calculus,
this change of scale is given by

d

dy
g−1(y) = lim

∆y→0

∆x

∆y
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The example Y = aX + b is a special case of this. For this transformation

g−1(y) =
y − b

a
;

d

dy
g−1(y) =

1
a

thus giving

fY (y) =
1
|a|fX

(
y − b

a

)
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Example: Lognormal distribution

Let X ∼ N(µ, σ2). The density function of Y = eX is

fY (y) =
1

yσ
√

2π
exp

{
−(log y − µ)2

2σ2

}
; y ≥ 0

since

g−1(y) = log y;
d

dy
g−1(y) =

d

dy
log y =

1
y
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The moments of the lognormal are

E[X] = exp(µ + 0.5σ2); Var(X) = exp(2µ + 2σ2)− exp(2µ + σ2)

= exp(2µ + σ2)(exp(σ2)− 1)
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The lognormal is often useful when effects are multiplicative as it is possible
to show that

SD(X) = E[X]
√

exp(σ2)− 1

∝ E[X]

where the proportionality constant depends on σ.

The name lognormal comes from the fact if Y is lognormal, then X = log(Y )
is normal.
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One example of where the lognormal distribution is used is the modeling of
stock prices. For example, let S(t) be the value of a stock at time t. Then
the value at time t + ∆t satisfies

S(t + ∆t)
S(t)

∼ logN(µ∆t, σ
2∆t)

where µ is a drift parameter and σ is the volatility of the stock.

If the multiplicative increments

S(∆t)
S(0)

,
S(2∆t)
S(∆t)

,
S(3∆t)
S(2∆t)

, . . . ,
S(1)

S(1−∆t)

are independent, this leads to a continuous path as ∆t → 0.

In addition, it can be shown that for any t > 0,

S(t)
S(0)

∼ logN(µt, σ2t)
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Theorem. [Probability Integral Transform] Let X be a continuous RV
with CDF FX(x). Then Y = FX(X) ∼ U(0, 1). Conversely, if Y ∼ U(0, 1),
then X = F−1

X (Y ) has CDF FX(x).

Proof.

P [Y ≤ y] = P [F (X) ≤ y] = P [X ≤ F−1(y)] = FX(F−1
X (y)) = y

i.e. the CDF of a U(0, 1) RV.

Conversely,

P [X ≤ x] = P [F−1
X (Y ) ≤ x] = P [Y ≤ FX(x)] = FX(x)

2
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This theorem has many useful implications.

• In statistics, it implies that p-values and confidence intervals work
correctly.

• It is also the motivation for probability plots (such as the Normal Scores
plot) which can be used to check distributional assumptions of an
analysis.

Another useful implication is that it gives a way to generate random numbers
from any distribution.

Suppose we want to generate random numbers X1, X2, . . . Xn from a
distribution with CDF FX(x) and quantile function F−1

X (u). Generate
U1, U2, . . . , Un from U(0, 1) and set Xi = F−1(Ui).
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For example, to generate a Cauchy RV, the quantile function for a standard
Cauchy (C(0, 1)) is

F−1(u) = tan(π(u− 1/2))

So generate u1, u2, . . . un from U(0, 1) RVs and plug into this function to
give standard Cauchy variates z1, z2, . . . , zn. Then to get x1, x2, . . . , xn

from C(µ, σ), let
xi = σzi + µ

Note that while you can generate random numbers for any distribution
using this mechanism, often they are generated by different mechanisms for
computational reasons, mainly speed. This is often required since for many
distributions, the CDF does not have a nice closed form expression, which
implies the quantile function does not either.

An important issue I won’t address here, for this mechanism to work well, we
need good algorithms for generating from a U(0, 1) distribution. Fortunately
there are good schemes for generating these psuedo-random numbers.
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