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Joint Discrete Distributions

Example: Random distribution of 3 balls into 3 cells (all distinguishable)

Sample space has 33 = 27 points

{Cell 1 Cell 2 Cell 3} {Cell 1 Cell 2 Cell 3}
1. { abc } 15. { bc a }
2. { abc } 16. { c ab }
3. { abc } 17. { b ac }
4. { ab c } 18. { a bc }

• • •
12. { a bc } 26. { c a b }
13. { ab c } 27. { c b a }
14. { ac b }

Lets define Xi = # of balls in cell i, i = 1, 2, 3 and N = # number of
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occupied cells.

The probability of any event involving 2 discrete RVs X and Y can be
computed from their joint PMF

pX,Y (x, y) = P [X = x, Y = y]

(viewed as a function of x and y, x ∈ X , y ∈ Y.)

In the example, pN,X1(n, x1) is given by

HHHHHHHHHH
n

x1 0 1 2 3 pN(n)

1 2/27 0 0 1/27 1/9
2 6/27 6/27 6/27 0 6/9
3 0 6/27 0 0 2/9

pX1(x1) 8/27 12/27 6/27 1/27 1

Joint Discrete Distributions 2



pX1,X2(x1, x2) is given by

HHHHHHHHHH
x2

x1 0 1 2 3 pX2(x2)

0 1/27 3/27 3/27 1/27 8/27
1 3/27 6/27 3/27 0 12/27
2 3/27 3/27 0 0 6/27
3 1/27 0 0 0 1/27

pX1(x1) 8/27 12/27 6/27 1/27 1

From the joint PMF, we can compute a number of quantities

• Marginal distributions

pX(x) = P [X = x] =
∑

y

pX,Y (x, y)

is the (marginal) PMF of X. Similarly for Y .

Joint Discrete Distributions 3



• Joint CDF

FX,Y (x, y) = P [X ≤ x, Y ≤ y]

=
∑

xi≤x,yj≤y

pX,Y (xi, yj)

• Conditional distributions

pX|Y (x|y) = P [X = x|Y = y] =
pX,Y (x, y)

pY (y)

This is the conditional PMF of X given Y = y. There is one conditional
PMF for each value of Y . There is also the conditional distribution of Y
given X = x.
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For example, pX1|N(x1|n) is

HHHHHHHHHH
n

x1 0 1 2 3

1 2/3 0 0 1/3 ← PMF of X|N = 1
2 1/3 1/3 1/3 0 ← PMF of X|N = 2
3 0 1 0 0 ← PMF of X|N = 3

Similarly, there are 4 conditional PMFs of N |X = x.

The cases discussed so far only involve 2 RVs. However you can look at the
joint distribution of more than 2 RV. For example, the joint distribution of
N, X1, X2, X3 which has PMF

pN,X1,X2,X3(n, x1, x2, x3) = P [N = n,X1 = x1, X2 = x2, X3 = x3]
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From this we can get the joint marginal of N and X1 by

pN,X1(n, x1) =
∑
x2

∑
x3

pN,X1,X2,X3(n, x1, x2, x3)

which gives us the table presented earlier.

We can also look at the conditional distribution of X2 and X3 given N and
X1. Its PMF has the form

pX2,X3|N,X1
(x2, x3|n, x1) = P [X2 = x2, X3 = x3|N = n,X1 = x1]

=
pN,X1,X2,X3(n, x1, x2, x3)

pN,X1(n, x1)
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Independent Discrete Random Variables

Two discrete RVs X and Y are independent if and only if

pX,Y (x, y) = pX(x)pY (y) for all x ∈ X , y ∈ Y

This is equivalent to saying that the conditional PMF of X|Y = y is the
same PMF for all y, or that the conditional PMF of Y |X = x is the same
PMF for all x, i.e

pX(x) = pX|Y (x|y); pY (y) = pY |X(y|x)

Theorem. X and Y are independent discrete RVs if and only if

P [X ∈ A, Y ∈ B] = P [X ∈ A]P [Y ∈ B]

for all possible events A ⊂ X and B ⊂ Y.
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Proof.

P [X ∈ A, Y ∈ B] =
∑

x∈A

∑

y∈B

pX(x)pY (y)

=

[∑

x∈A

pX(x)

]
∑

y∈B

pY (y)




= P [X ∈ A]P [Y ∈ B]

2

Example: Suppose there two hospitals near downtown Boston (call them M
and T). The average number of visits to the emergency room due to heart
problems are 10/day and 5/day respectively. If we know that on a certain
day there are 12 visits in total, what is the joint distribution of the numbers
of visits in the two hospitals.
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Let N = M + T where M and T are the number of visits to hospitals M
and T. Then P [N = 12] satisfies

P [N = 12] = P [M = 12, T = 0]+P [M = 11, T = 1]+. . .+P [M = 0, T = 12]

and

P [M = m,T = t|N = 12] =
P [M = m,T = t]

P [N = 12]
; m + t = 12

However we haven’t specified enough information to finish this off. Lets
assume that M ∼ Pois(10) and T ∼ Pois(5) and the M and T and
independent RVs.

Lets solve this for general the general case

Suppose X and Y are independent Poissons with parameters λ1 and λ2

respectively. What is the conditional distribution of X given X + Y = n.
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Let N = X + Y . We want pX|N(x|n) for x = 0, 1, . . . , n.

First the joint distribution of X and N is

pX,N(x, n) = P [X = x,N = n]

= P [X = x, Y = n− x]

= P [X = x]P [Y = n− x]

= e−λ1
λx

1

x!
× e−λ2

λ
(n−x)
2

(n− x)!
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giving the marginal distribution for N of

pN(n) =
n∑

x=0

pX,N(x, n)

= e−(λ1+λ2)
n∑

x=0

1
x!(n− x)!

λx
1λ

(n−x)
2

= e−(λ1+λ2)
(λ1 + λ2)n

n!

n∑
x=0

(
n

x

)
px(1− p)n−x

where p =
λ1

λ1 + λ2

= e−(λ1+λ2)
(λ1 + λ2)n

n!

That is N ∼ Pois(λ1 + λ2)
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Then

pX|N(x|n) =
e−λ1

λx
1

x! × e−λ2
λ

(n−x)
2

(n−x)!

e−(λ1+λ2)(λ1+λ2)n

n!

=
(

n

x

)
px(1− p)n−x

That is X|N = n ∼ Bin(n, p) where p = λ1
λ1+λ2

The concept of “conditional distribution” is very useful.

1. Even if we have pX,N(x, n) for all x, n, this may not give as clear an
understanding of the situation as the conditional distribution pX|N(x|n).
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2. Once we have the conditional distribution of X|N = n, we can compute
any other conditional quantity that is defined through the concept of a
RV and its distribution.

e.g. In the above Poisson example

E[X|N = n] = np = n
λ1

λ1 + λ2

Var(X|N = n) = np(1− p) = n
λ1

λ1 + λ2

λ2

λ1 + λ2

So for the example we started out with (assuming independent Poissons)

E[M |N = 12] = np = 12
10
15

= 8

Var(M |N = 12) = np(1− p) = 12
10
15

5
15

= 2.667

Independent Discrete Random Variables 13



As part of the above example, we proved a special case of the following

Lemma. If X and Y are two discrete RVs and Z = X +Y , then the PMF
of Z is

pZ(z) =
∑

x

pX,Y (x, z − x)

=
∑

y

pX,Y (z − y, y)

Furthermore, if X and Y are independently and identically distributed (iid)
with PMF p(·), then

pZ(z) =
∑

x

p(x)p(z − x)
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The sequence pZ(z), z = . . . ,−2,−1, 0, 1, 2, . . ., is known as the
convolution of the sequence p(·) with itself.

pZ(z) = (p ∗ p)(z)

Independent Discrete Random Variables 15



Dependent Discrete Random Variables

Often discrete RVs will not be independent. Their joint distribution can
still be determined by use of the general multiplication rule.

pX,Y (x, y) = pX(x)pY |X(y|x)

= pY (y)pX|Y (x|y)

So in the emergency room visits example, we did not have to assume that
the two hospitals were independent.

Example: Polling success rate

When doing a telephone poll, there are a number of results that can occur.
It may happen that nobody answers the phone. Or if they answer the
phone, they may refused to participate. A possible model describing this
situation is
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N ∼ Bin(M, π)

X|N = n ∼ Bin(n, p)

where M is the number of phone numbers called, N is the number of phone
numbers where somebody answers the phone and X is the number of phone
numbers where somebody agrees to participate.

The joint PMF of N and X is

pN,X(n, x) =
(

M

n

)
πn(1− π)M−n

(
n

x

)
px(1− p)n−x; 0 ≤ x ≤ n ≤ M

This is an example of what is known as a hierarchical model.
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It is possible to show that the marginal distribution of X is Bin(M, πp).

One approach is to show that

pX(x) =
M∑

n=0

pN,X(n, x)

=
M∑

n=0

(
M

n

)
πn(1− π)M−n

(
n

x

)
px(1− p)n−x

=
(

M

x

)
(πp)x(1− πp)M−x
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An easier approach is the following:

For each of the M phone numbers called, a person a can agree to participate
or not (a Bernoulli random variable).

For that to happen, two events must occur

1. The phone is answered (with probability π)

2. Given the phone is answered, somebody agrees to participate (with
probability p)

The probability that both events occur is πp

So X is the sum of M independent Bernoulli random variables, each with
success probability πp.
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