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Joint Continuous Distributions

Not surprisingly we can look at the joint distribution of 2 or more continuous
RVs. For example, we could look at the amount of time it takes to get
to the Science Center from home each morning for the remaining days this
week (X = Thursday travel time and Y = Friday’s travel time).

Probabilities are based on the joint PDF fX,Y (x, y). The probability of
being in the event A is given by

P [(X,Y ) ∈ A] =
∫

A

fX,Y (x, y)dxdy

for any A ⊂ R2.
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Note that a joint density must satisfy

f(x, y) ≥ 0
∫

Ω

f(x, y)dxdy = 1

where Ω is the sample space for the
combination of RVs.
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For rectangular regions, the joint CDF is useful for calculating probabilities.

FX,Y (x, y) = P [X ≤ x, Y ≤ y]

=
∫ x

−∞

∫ y

−∞
fX,Y (x, y)dydx

P [x1 < X ≤ x2, y1 < Y ≤ y2]

= F (x2, y2)− F (x2, y1)

− F (x1, y2) + F (x1, y1)
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As with the univariate case, the joint PDF is given by

fX,Y (x, y) =
∂2

∂x∂y
FX,Y (x, y)

wherever the partial derivative is defined.

For small ∆x and ∆y, if f is continuous at (x, y),

P [x ≤ X ≤ x + ∆x, y ≤ Y ≤ y + ∆y] ≈ fX,Y (x, y)∆x∆y

so the probability of getting in a small region around (x, y) is proportional
to fX,Y (x, y) so the density is giving information about how likely and
observation at the point is.
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The marginal distribution of each component is “easily” determined from
the joint density as

fX(x) =
∫ ∞

−∞
fX,Y (x, y)dy

This is the analogue to the discrete case, where we are integrating out y
instead of adding over it.
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For example, let

fX,Y (x, y) = 9x2y2; 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
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Then

fX(x) =
∫ 1

0

9x2y2dy = 3x2; 0 ≤ x ≤ 1

Similarly fY (y) = 3y2.
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Also
FX,Y (x, y) = x3y3; 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

x
y

z

FX,Y (x, y) =
∫ x

0

∫ y

0

9x2y2dxdy; 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
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Not all joint RVs are defined on nice rectangles. For example

x
y

z

fX,Y (x, y) = 2e−(x+y); 0 ≤ x ≤ y, y ≥ 0

is defined on an infinite triangle. You need to be careful in determining the
marginal distributions.
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fX(x) =
∫ ∞

x

2e−xe−ydy = 2e−2x; x ≥ 0

and

fY (y) =
∫ y

0

2e−ye−xdx = 2e−y(1−e−y); y ≥ 0
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The concept of conditional distribution is a bit more complex in the
continuous case.

P [x ≤ X ≤ x + ∆x|y ≤ Y ≤ y + ∆y]

=
P [x ≤ X ≤ x + ∆x, y ≤ Y ≤ y + ∆y]

P [y ≤ Y ≤ y + ∆y]

≈ fX,Y (x, y)∆x∆y

fY (y)∆y

=
{

fX,Y (x, y)
fY (y)

}
∆x

So conditional on Y ∈ [y, y + ∆y], X has, approximately, a density given
by the expression in { }. Note that this density does not depend on ∆y as
long as it is small.
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Thus we write the conditional PDF of X|Y = y as

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
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For the examples seen so far

• fX,Y (x, y) = 9x2y2

fX|Y (x|y) =
9x2y2

3y2
= 3x2; 0 ≤ x ≤ 1

fY |X(y|x) =
9x2y2

3x2
= 3y2; 0 ≤ y ≤ 1
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• fX,Y (x, y) = 2e−(x+y)

fX|Y (x|y) =
2e−(x+y)

2e−y(1− e−y)
=

e−x

1− e−y
; 0 ≤ x ≤ y

This is an example of a truncated distribution. X has an exponential
distribution except that values larger than y are removed.

fY |X(y|x) =
2e−(x+y)

2e−2x
= ex−y; y ≥ x

This is an example an example of a shifted exponential. Y is exponential
on the interval [x,∞).
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Independent Continuous Random Variables

A set of continuous RVs X1, X2, . . . , Xn are independent if and only if

f(x1, x2, . . . , xn) = fX1(x1)fX2(x2) . . . fXn(xn)

for all x1, x2, . . . , xn.

Note that the text defines independence in terms of CDFs instead of the
densities. These are equivalent definitions since

∂n

∂x1 . . . ∂xn
FX1(x1)FX2(x2) . . . FXn(xn) = fX1(x1)fX2(x2) . . . fXn(xn)

and
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∫ x1

∞

∫ x2

∞
. . .

∫ xn

∞
fX1(u1)fX2(u2) . . . fXn(un)du1du2 . . . dun

=
n∏

i=1

[∫ xi

∞
fXi

(ui)dui

]

= FX1(x1)FX2(x2) . . . FXn(xn)

Both of these are equivalent to requiring

P [X ∈ A, Y ∈ B] = P [X ∈ A]P [Y ∈ B]

for all sets A and B (with the obvious extension to 3 or more RVs)

The proof of this is similar to that for the discrete case. Replace the sums
by integrals.
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This factorization of densities (or CDFs) gives an easy way to check whether
RVs are independent. If the joint density can be written as (using 2 RVs
for example where x ∈ X and y ∈ Y)

fX,Y (x, y) = g(x)h(y)for all x ∈ X , y ∈ Y

with g(x) ≥ 0 and h(y) ≥ 0, X and Y are independent. Note that in this
factorization g and h don’t have to be densities (they will be proportional
to the marginal densities).

For example, with f(x, y) = 9x2y2, this can be decomposed with g(x) = 9x2

and h(y) = y2.

However an example discussed in section 3.3, f(x, y) = 2x + 2y − 4xy, X
and Y are not independent since there is no decomposition of the valid
form.
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The condition for all x ∈ X , y ∈ Y is
important. The example where the sample
space was defined on the triangle

fX,Y (x, y) = 2e−(x+y); 0 ≤ x ≤ y, y ≥ 0

appears that it can be factored in the desired
form (2e−(x+y) = 2e−x × e−y). However it

doesn’t account for the region with 0 probability.

This result isn’t usually used to show dependence. To do this, usually you
will show that the joint density is not the product of the marginals or in
terms of conditional distributions.

There is the similar result with the CDF.

F (x, y) = G(y)H(y)

with G and H both nondecreasing, non-negative functions.
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Two continuous RVs are independent iff

fY |X(y|x) = fY (y) for all y

or

fX|Y (x|y) = fX(x) for all x

Actually if one holds, the other has to as well.

Technical point: Actually needs to be for all but a countable number of
points.

Independent Continuous Random Variables 18



Dependent Continuous Random Variables

As with the discrete case, joint distributions can be built up with the use of
conditional distributions.

The joint density of two RVs can be written as

fX,Y (x, y) = fX(x)fY |X(y|x)

= fY (y)fX|Y (x|y)

There is the obvious extension to three variables of

fX,Y,Z(x, y, z) = fX(x)fY |X(y|x)fZ|X,Y (z|x, y)

Of course there are versions with all 6 possible orderings of X, Y , and Z.
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Example: A model for SAT like scores

Let X be the results of test 1 (e.g. math) and Y be the results of test 2
(e.g. English). A possible model for this this is

X ∼ N(µX, σ2
X)

Y |X = x ∼ N(µY + ρ
σY

σX
(x− µX), (1− ρ2)σ2

Y )

where −1 ≤ ρ ≤ 1. If ρ > 0 this model suggests that if X is bigger than
its mean, Y tends to be bigger than its mean.

For those of you that have seen linear regression

E[Y |X = x] = µY + ρ
σY

σX
(x− µX)

is the population regression line and ρ is the population correlation.
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The joint density of X and Y is

fX,Y (x, y) =
1

σX

√
2π

exp
(
−1

2
(x− µX)2

σ2
X

)

× 1
σY

√
2π(1− ρ2)

exp


−1

2

(
y − µY − ρσY

σX
(x− µX)

)2

σ2
Y (1− ρ2)




=
1

2πσXσY

√
1− ρ2

exp
(
− 1

2(1− ρ2)

[
(x− µX)2

σ2
X

+
(y − µY )2

σ2
Y

− 2ρ(x− µX)(y − µY )
σXσY

])

This is known as the bivariate normal density.
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Useful properties of the bivariate normal

• Marginals are univariate normal

X ∼ N(µX, σ2
X) and Y ∼ N(µY , σ2

Y )

• Conditional distributions are univariate normal

Y |X = x ∼ N(µY + ρ
σY

σX
(x− µX), (1− ρ2)σ2

Y )

X|Y = y ∼ N(µX + ρ
σX

σY
(y − µY ), (1− ρ2)σ2

X)

• Sums of normals are normal. If Z = X + Y , then

Z ∼ N(µX + µY , σ2
X + σ2

Y + 2ρσXσY )
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Note that for all the examples presented µX = µY = 0 and σ2
X = σ2

Y = 1,
so the pairs of marginal distributions is the same in all 4 cases. However the
joint distributions, and thus the conditional distributions, are all different.

To prove that a sum of normals is normal, you can use the following lemma.

Lemma. If X and Y are two continuous RVs and Z = X + Y , then the
PDF of Z is

fZ(z) =
∫

X
fX,Y (x, z − x)dx

=
∫

Y
fX,Y (z − y, y)dy

Example: Let X1, X2, . . . Xn be independent Exp(λ) RVs. Then Sn =
X1 + X2 + . . . + Xn ∼ Gamma(n, λ).
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For S2 = X1 + X2

fS2(s) =
∫ ∞

0

fX1(x)fX2(s− x)dx

=
∫ s

0

(
λe−λx

) (
λe−λ(s−x)

)
dx

= λ2e−λs

∫ s

0

dx = λ2se−λs

Then for S3 = S2 + X3

fS3(s) =
∫ ∞

0

fS2(x)fX3(s− x)dx =
∫ s

0

(
λ2xe−λx

) (
λe−λ(s−x)

)
dx

= λ3e−λs

∫ s

0

xdx =
λ3s2

2
e−λs

which is a Gamma(3, λ) density. The general case follows by induction.

Dependent Continuous Random Variables 26


