
Transformations Involving Joint Distributions

Statistics 110

Summer 2006

Copyright c©2006 by Mark E. Irwin



Transformations Involving Joint Distributions

Want to look at problems like

• If X and Y are iid N(0, σ2), what is the distribution of

– Z = X2 + Y 2 ∼ Gamma(1, 1
σ2)

– U = X/Y ∼ C(0, 1)
– V = X − Y ∼ N(0, 2σ2)

• What is the joint distribution of U = X + Y and V = X/Y if X ∼
Gamma(α, λ) and Y ∼ Gamma(β, λ) and X and Y are independent.

Approaches:

1. CDF approach fZ(z) = d
dzFZ(z)

2. Analogue to fY (y) = fX(g−1(y))
∣∣∣ d
dyg−1(y)

∣∣∣ (Density transformation)
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CDF approach:

Let X1, X2, . . . , Xn have density fX1,X2,...,Xn(x1, x2, . . . , xn) and let Z =
g(X1, X2, . . . , Xn).

Let Az = {(x1, x2, . . . , xn) : g(x1, x2, . . . , xn) ≤ z}

FZ(z) = P [Z ≤ z]

Then just differentiate this to get the density

Example: Let Z = Y − X. Then Az =
{(x, y) : y − x ≤ z} = {(x, y) : y ≤ x + z}

FZ(z) =
∫ ∞

−∞

∫ x+z

−∞
fX,Y (x, y)dydx

=
∫ ∞

−∞

∫ ∞

y−z

fX,Y (x, y)dxdy
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Making the change of variables x = y − u in the second form gives

FZ(z) =
∫ ∞

−∞

∫ z

−∞
fX,Y (y − u, y)dudy

=
∫ z

−∞

∫ ∞

−∞
fX,Y (y − u, y)dydu

Differentiating this gives the result

fZ(z) =
∫ ∞

−∞
fX,Y (x, x + z)dx

by the change of variables x = y − z, the alternative form is derived

fZ(z) =
∫ ∞

−∞
fX,Y (y − z, y)dy
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For example, let X and Y be independent N(0, 1) variables. Then the
density of Z = Y −X is

fZ(z) =
∫ ∞

∞

1√
2π

exp
(
−x2

2

)
1√
2π

exp
(
−(x + z)2

2

)
dx

=
1√
2π

∫ ∞

∞

1√
2π

exp
(
−2x2 + 2xz + z2

2

)
dx

=
1√
2π

∫ ∞

∞

1√
2π

exp

(
−2(x + z

2)
2 + z2

2

2

)
dx

=
1

2
√

2π
e−z2/4

∫ ∞

∞

2√
2π

exp
(
−2(x + z

2)
2

2

)
dx

=
1

2
√

2π
e−z2/4

so Z ∼ N(0, 2)
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Example: Let X ∼ β(a, 1) and Y ∼ β(b, 1)
and Z = XY (assume a > b > 0).

Then

Az = {(x, y) : xy ≤ z}
= {(x, y); 0 ≤ x ≤ z}
∪ {(x, y) : y ≤ z

x
, z ≤ x ≤ 1}

So

FZ(z) =
∫ z

0

∫ 1

0

axa−1byb−1dydx +
∫ 1

z

∫ z/x

0

axa−1byb−1dydx

=
∫ z

0

axa−1dx +
∫ 1

z

axa−1
(z

x

)b

dx
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FZ(z) = za + azb

∫ 1

z

xa−1−bdx

= za + azb 1
a− b

za−b

∣∣∣∣
1

z

= za +
a

a− b
zb(1− za−b)

=
a

a− b
zb − b

a− b
za

So

fZ(z) =
ab

a− b
zb−1 − ab

a− b
za−1 =

ab

a− b
(zb−1 − za−1)
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Density transformation:

Let X and Y have joint PDF fX,Y (x, y) and suppose

U = g1(X,Y )

V = g2(X,Y )

is an invertible, differentiable transformation. Assume that the inverse
transformation is

X = h1(U, V )

Y = h2(U, V )
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Then the joint density of U and V is

fU,V (u, v) = fX,Y (x, y) |Jg(x, y)|−1

where (x, y) = h(u, v) and Jg(x, y) denotes the Jacobian of the function
g(x, y)

Jg = det

(
∂g1
∂x

∂g1
∂y

∂g2
∂x

∂g2
∂y

)
=

∂g1

∂x

∂g2

∂y
− ∂g1

∂y

∂g2

∂x

Like the book, I will not prove this. The idea behind the proof is that when
you transform small regions from the (X, Y ) space to the (U, V ) space the
size of the regions changes. The Jacobian gives the multiplicative factor
of the size change and what is required for the regions to have the same
probabilities in both spaces.

U = g1(X,Y ) = X + Y V = g2(X,Y ) = X − Y
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X = h1(U, V ) =
U + V

2
Y = h2(U, V ) =

U − V

2

|Jg| = det

(
1 1
1 −1

)
= | − 2| = 2
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Lets assume X and Y are iid U(0, 1) RVs. Then the joint density of
U = X + Y and V = X − Y is

fU,Y (u, v) =
1
2
I(0,1)

(
u + v

2

)
I(0,1)

(
u− v

2

)

So U and V are uniform on the diamond in the previous plot.

Example: Let X ∼ Gamma(a, λ) be independent of Y ∼ Gamma(b, λ).
What is the joint distribution of U = X + Y and V = X/Y .

x = h1(u, v) =
uv

1 + v
y = h2(u, v) =

u

1 + v

|Jg| = det

(
1 1
1
y − x

y2

)
=

∣∣∣∣
−y − x

y2

∣∣∣∣ =
u

(1 + v)2
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fU,V (u, v) =
u

(1 + v)2
1

Γ(a)Γ(b)
λa+b

(
uv

1 + v

)a−1 (
u

1 + v

)b−1

e−λu

=
λa+b

Γ(a)Γ(b)
ua+b−1e−λu va−1

(1 + v)a+b

=
{

λa+b

Γ(a + b)
ua+b−1e−λu

}{
1

β(a, b)
va−1

(1 + v)a+b

}

= fU(u)fV (v)

Since the density factors we can see that U and V are independent in this
case. In addition U ∼ Gamma(a + b, λ).

If b ≤ 1, V has a density with an infinite mean. If 1 < b ≤ 2, V has a finite
mean but an infinite variance.
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This approach can be generalized to n variables. If X1, . . . , Xn has joint
PDF fX1,...,Xn(x1, . . . , xn) and an invertible, differentiable transformation

Yi = gi(X1, . . . , Xn); i = 1, . . . , n

Xi = hi(Y1, . . . , Yn); i = 1, . . . , n

has Jacobian Jg (Jg is the determinant of the matrix with ij entry ∂gi/∂xj),
then the joint PDF of Y1, . . . , Yn is

fY1,...,Yn(y1, . . . , yn) = fX1,...,Xn(x1, . . . , xn)|Jg(x1, . . . , xn)|−1

where each of the xi’s is expressed in terms of the y’s (e.g. xi =
hi(y1, . . . , yn)
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Note that to use this theorem you need as many Yi’s as Xi as the
determinant is only defined for square matrices.

If there are less Yi’s than Xi’s, (say 1 less), you can set Yn = Xn, apply
the theorem, and then integrate out Yn.

If there are more Yi’s than Xi’s, the transformation usually can’t be
invertible (over determined system), so the theorem can’t be applied.
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