
Covariance and Correlation

Statistics 110

Summer 2006

Copyright c©2006 by Mark E. Irwin



Joint Distributions and Expectation

Let X and Y have joint density f(x, y). Then the expectation of g(X, Y ),
E[g(X,Y )] is

E[g(X,Y )] =
∫ ∫

g(x, y)f(x, y)dxdy

For example, if X and Y are independent U(0, 1),

E[XY ] =
∫ 1

0

∫ 1

0

xydxdy

=
∫ 1

0

1
2
ydy

=
1
4
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If the function g is only a function of a single variable, such as g(x, y) = h(x),
then the expectation reduces to the marginal expectation as

E[g(X, Y )] =
∫ ∫

h(x)f(x, y)dydx

=
∫

h(x)
[∫

f(x, y)dy

]
dx

=
∫

h(x)f(x)dx

= E[h(X)]

Note that the same results hold for discrete RVs. Also the obvious extensions
hold for 3 or more RVs.
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Covariance

Lets consider the case where X and Y are both Bern(p) marginally.

1. If X and Y are independent

Var(X + Y ) = Var(Bin(2, p)) = 2p(1− p)

2. If X = Y (positive dependence), then

Var(X + Y ) = Var(2X) = Var(2Bin(1, p)) = 4p(1− p)

3. If X = −Y (negative dependence), then

Var(X + Y ) = Var(0) = 0
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To quantify the amount of covariation, consider for any X and Y , the
difference

Var(X + Y )− [Var(X) + Var(Y )]

Lemma. This difference is equal to

2E [(X − E[X])(Y − E[Y ])]

Proof.

Var(X + Y ) = E[(X − EX + Y − EY )2]

= E[(X − EX)2 + (Y − EY )2 + 2(X − EX)(Y − EY )]

= Var(X) + Var(Y ) + 2E[(X − E[X])(Y − E[Y ])]

2

Definition. The Covariance of X and Y is defined as

Cov(X, Y ) = E [(X − E[X])(Y − E[Y ])]
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Properties of Covariance:

1. Cov(X, Y ) = E[XY ]− E[X]E[Y ]

2. Cov(X, Y ) = Cov(Y, X)

3. Cov(X, X) = Var(X)

4. Cov(aX + bY + c, Z) = aCov(X, Z) + bCov(Y, Z) where X, Y, Z are
RVs and a, b, c are constants.

5. Cov(
∑m

i=1 Xi,
∑n

j=1 Yj) =
∑m

i=1

∑n
j=1 Cov(Xi, Yj)

Proof. By 4), LHS =
∑m

i=1 Cov(Xi,
∑n

j=1 Yj). By applying 4) to each
term in the sum gives the result. 2
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Theorem.

Var

(
n∑

i=1

Xi

)
=

n∑

i=1

Var(Xi) + 2
∑

i<j

Cov(Xi, Xj)

Proof. Use 3) and 5) with Yi = Xi, i = 1, . . . , n 2

A useful extension to this theorem is

Theorem.

Var

(
n∑

i=1

biXi

)
=

n∑

i=1

b2
iVar(Xi) + 2

∑

i<j

bibjCov(Xi, Xj)

Theorem. If X and Y are independent, then

Cov(X, Y ) = 0
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Proof. If X and Y are independent (and X and Y are continuous RVs)

E[XY ] =
∫

X

∫

Y
xyfX,Y (x, y)dydx

=
∫

X

∫

Y
xyfX(x)fY (y)dydx

=
(∫

X
xf(x)dx

)(∫

Y
yf(y)dy

)
= E[X]E[Y ]

(Note that a similar result holds for discrete RVs). Then

Cov(X,Y ) = E[XY ]− E[X]E[Y ] = E[X]E[Y ]− E[X]E[Y ] = 0

2

A direct consequence of this result is that if X1, X2, . . . , Xn are independent
RVs, then
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Var

(
n∑

i=1

Xi

)
=

n∑

i=1

Var(Xi)

Note that the converse of this theorem is not true. Cov(X, Y ) = 0 does
not imply that X and Y are independent. For example, let X ∼ U(−1, 1)
and Y = X2. Cov(X,Y ) = 0, but the variables are highly dependent.
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Correlation

Definition. If X and Y are jointly distributed random variables and the
variances and covariances all exist with the variances non-zero, then the
Correlation of X and Y , denoted by ρ, is

ρ =
Cov(X, Y )√

Var(X)Var(Y )
= E

[(
X − µX

σX

)(
Y − µY

σY

)]

Properties of correlation:

1. The correlation is dimensionless

ρaX+b,cY +d = ρX,Y

So for example, it doesn’t matter whether you measure height in inches
or meters or weight in pounds or kilograms.
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ρaX+b,cY +d =
Cov(aX + b, cY + d)√

Var(aX + b)Var(cY + d)

=
acCov(X, Y )√

a2Var(X)c2Var(Y )
=

Cov(X, Y )√
Var(X)Var(Y )

= ρX,Y

2. |ρ| ≤ 1

Proof.

0 ≤ Var
(

X

σX
+

Y

σY

)

= Var
(

X

σX

)
+ Var

(
Y

σY

)
+ 2Cov

(
X

σX
,

Y

σY

)

=
Var(X)

σ2
X

+
Var(Y )

σ2
Y

+
2Cov(X, Y )

σXσY

= 2(1 + ρ)
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which implies ρ ≥ −1. Similarly

0 ≤ Var
(

X

σX
− Y

σY

)
= 2(1− ρ)

which implies that ρ ≤ 1. 2

3. If |ρ| = 1, then Y = a + bX with probability 1.

Proof. Assume that ρ = 1. Then

Var
(

X

σX
− Y

σY

)
= 0

This implies that

P

[
X

σX
− Y

σY
= c

]
= 1
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for some constant c or that

P

[
Y =

σY

σX
X + cσY

]
= 1

A similar argument holds when ρ = −1. 2

The correlation ρ is the 5th parameter of the bivariate normal distribution
with density

fX,Y (x, y) =
1

2πσXσY

√
1− ρ2

exp
(
− 1

2(1− ρ2)

[
(x− µX)2

σ2
X

+
(y − µY )2

σ2
Y

− 2ρ(x− µX)(y − µY )
σXσY

])
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As shown in the text

Cov(X, Y ) =
∫ ∞

−∞

∫ ∞

−∞
(x− µX)(y − µY )f(x, y)dxdy = ρσXσY

which implies Corr(X, Y ) = ρ. Also we’ve seen that

Y |X = x ∼ N(µY + ρ
σY

σX
(x− µX), (1− ρ2)σ2

Y )

so E[Y |X = x] = µY + ρσY
σX

(x− µX) is a linear relationship with the slope
proportional to ρ.

Also Var(Y |X = x) = (1 − ρ2)σ2
Y is constant for all x and this variance

decreases as |ρ| increases.

In general, the correlation coefficient ρ measures the strength of a linear
relationship between two variables, not just for bivariate normal ones. In
the case of bivariate normal, data under different ρ look like
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