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Joint Distributions and Expectation

Let X and Y have joint density f(z,y). Then the expectation of g(X,Y),
Elg(X,Y)]is

Elg(X,Y)] = / / 9z, 9) f (@, y)dady

For example, if X and Y are independent U(0, 1),
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If the function g is only a function of a single variable, such as g(z,y) = h(x),
then the expectation reduces to the marginal expectation as

g(X,Y)] // (z,y)dydx
_ /h(x) U f(x,y)dy] dx

/h(a:)f(:c)dx
= E[h(X)]

Note that the same results hold for discrete RVs. Also the obvious extensions
hold for 3 or more RVs.
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Covariance

Lets consider the case where X and Y are both Bern(p) marginally.

1. If X and Y are independent

Var(X +Y) = Var(Bin(2,p)) = 2p(1 — p)

2. If X =Y (positive dependence), then

Var(X +Y) = Var(2X) = Var(2Bin(1,p)) = 4p(1 — p)

3. If X = =Y (negative dependence), then

Var(X +Y) = Var(0) =0
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To quantify the amount of covariation, consider for any X and Y, the
difference

Var(X +Y) — [Var(X) + Var(Y)]
Lemma. This difference is equal to
2B [(X — EIX])(Y — E[Y])]
Proof.
Var(X +Y)=E[(X —EX +Y — EY)?]

= E[(X —EX)??+ (Y —EY)?+2(X —EX)(Y — EY)]
= Var(X) + Var(Y) + 2E[(X — E[X])(Y — E[Y])]

[l

Definition. The Covariance of X and Y is defined as

Cov(X,Y)=F|[(X — E[X])(Y — E|Y])]
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Properties of Covariance:

1. Cov(X,Y)=F[XY]|— E|X|E|Y]
2. Cov(X,Y) =Cov(Y, X)

3. Cov(X, X) = Var(X)

4. Cov(aX +bY +¢,Z) = aCov(X, Z) + bCov(Y, Z) where X,Y, Z are
RVs and a, b, ¢ are constants.

5. COV(Z,L_ XZ?ZJ 1 ]) Z:il 2?21 COV(X”L}}/j)

Proof. By 4), LHS =", Cov(X;, > ._, Y;). By applying 4) to each
term in the sum gives the result. O
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Theorem.
Var (Z X,L) — ZV&I‘(X,L-) + 2 Z Cov (X, X,)
i=1 i=1 1<j
Proof. Use 3) and 5) with V; = X;,i=1,...,n O
A useful extension to this theorem is

Theorem.

Var (Z bz-Xz-> =) biVar(X;) +2 bibjCov(X;, X))
1=1 1=1

i<j
Theorem. [f X andY are independent, then

Cov(X,Y)=0
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Proof. If X and Y are independent (and X and Y are continuous RVs)

E(XY] Z/X/yxny,Y(any)dydﬂf

:/X/y:cyfx(x)fy(y)dydx
_ ( / xf(x)dx) ( / yf(y)dy) _ BIX|E]Y]

(Note that a similar result holds for discrete RVs). Then
Cov(X,Y)=F[XY]| - FE|X|E]Y]=FX|E]Y] - EX|E[Y]|=0

[

A direct consequence of this result is that if X1, X, ..., X,, are independent
RVs, then
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Var (i: Xz) = ETL:V&I'(XZ)

Note that the converse of this theorem is not true. Cov(X,Y) = 0 does
not imply that X and Y are independent. For example, let X ~ U(—1,1)
and Y = X2 Cov(X,Y) = 0, but the variables are highly dependent.

1 y=x
E[X]Z/ “dr =0 N
12 3
1 2 © _|
1 =
E[Xz]:/ Y dr=-=E[Y] @ .
-1 2 23 o |
1 5173 S -
E[X?’]:/ - du = = E[XY] o
1 © | | | |

-1.0 -0.5 0.0 0.5 1.0

Cov(X,Y) = E[XY] — E[X]|E]Y] =0 — 0% =

Covariance 8



Correlation

Definition. /f X and Y are jointly distributed random variables and the
variances and covariances all exist with the variances non-zero, then the
Correlation of X and Y, denoted by p, is

i (5 (5)

Properties of correlation:

1. The correlation i1s dimensionless

PaX+b,cY+d — PX,Y

So for example, it doesn't matter whether you measure height in inches
or meters or weight in pounds or kilograms.
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Cov(aX +b,cY +d)

PaX+b,cY+d = v/ Var(aX + b)Var(cY + d)
C acCov(X,Y) CoviX V) _
\/QQVar(X)CQVM(Y) \/Var )YVar(Y) PX)Y
2. |pl <1
Proof.

— (£)+Var(y>+QCOV(X Y)
ox oY XY
Var(X) = Var(Y) 2Cov(X,Y)
€ +

0% Oy 9XTY
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which implies p > —1. Similarly

OSVar(£—£>:2(1—p)

D¢ Oy

which implies that p < 1. O

3. If [p| =1, then Y = a + bX with probability 1.

Proof. Assume that p = 1. Then

This implies that
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for some constant ¢ or that

PlY=2YXX +coy| =1
Ox

A similar argument holds when p = —1. O

The correlation p is the 5th parameter of the bivariate normal distribution
with density

f (33 ) _ 1 ex (_ 1 [(CIZ B MX)Q
XYY _QWOngﬂ P 2(1 — p?) ;

(v —pv)®  2p(x — px)(y — uy)DOX

_|_ 2 _
O'Y Ox0y
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As shown In the text

Cov(X,Y) = / N / (@ = )y — py) f (@ y)dedy = poxay

which implies Corr(X,Y) = p. Also we've seen that

so ElY|X =z] = uy + p%(m — px) is a linear relationship with the slope
proportional to p.

Also Var(Y|X = x) = (1 — p?)o? is constant for all x and this variance
decreases as |p| increases.

In general, the correlation coefficient p measures the strength of a linear
relationship between two variables, not just for bivariate normal ones. In
the case of bivariate normal, data under different p look like
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