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Conditional Expectation

Definition. The Conditional Expectation of Y given X = x is

>, up(ylr)  Discrete RV

EWY|X =zx =
Yl | {fyyf(ya:)dy Continuous RV

More generally (for the continuous example),

Eh(Y)|X = o] = / h(y) f(yle)dy

Yy

The conditional variance is given by

Var(Y|X = z) = E[(Y — E[Y|X = 2])?|X = 7]
= B[Y?X =z2] - (E[Y|X = 2])°

Conditional Expectation



Notice that all we are doing with conditional expectations is the standard
calculations with the conditional distribution.

Example:
1 _x/ 2
f(ai,y)zﬁe VeV, x2>0,y>0
SO
fly)=e™
L /.2
fely) = e v (XY =y ~ Exp(1/y?))
Therefore
BIX]Y = y] = —— =
T
1
XY =) = ——
V&I‘( ‘ y) (1/y2)2 Yy
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Note that for any h, E[h(Y)|X = z] is a function of x (say H(x)). Since
X is a random variable, so is H(X). So we can talk about their expectation
and variance.

Of particular interest are
9(X) = E[Y|X]

and
h(X) = Var(Y|X)

There are two important theorems about these quantities

Theorem. [terated Expectation

E[E[X]Y]] = E|X]
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Proof. Let g(y) = E[X|Y = y]

Elg(v)] = / g fy(y)dy  (Assume continuous)

_ / (/fo|y(x|y)da:‘) fy (y)dy

ny(a: Y)
/ XL gy

//:Cfxyazydyd:c E|X

Conditional Expectation



For the example, E[X|Y] =Y?, fy(y) = e ¥

E[X] = E[E[X|Y]] = E[Y”]
= / yie Vdy =T'(3) = 2! =2
0
This theorem can be thought of as a law of total expectation. The

expectation of a RV X can be calculated by weighting the conditional
expectations appropriately and summing or integrating.
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Example: Fuel Use

X = Car Weight, Y = 3% (Gallons to go 100 miles)
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Model for Fuel Use: Y |X = 2 ~ N(a + Bz, 0?)

Suppose we want to get a handle the marginal distribution of fuel use. This
depends on the breakdown of the weight of cars.

If there are more heavy cars, the overall fuel use should be higher.

Lets consider two situations, both dealing with only 2500 Ibs cars (mean =
3.067 gal) and 4000 Ibs cars (mean = 4.310 gal).

1. 2500 Ibs: 50%, 4000 Ibs: 50%

E[Fuel] = 0.5 x 3.067 + 0.5 x 4.310 = 3.688

2. 2500 Ibs: 20%, 4000 Ibs: 80%

E[Fuel] = 0.2 x 3.067 + 0.8 x 4.310 = 4.061
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Fuel Use
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In the survey response example discussed earlier

N ~ Bin(M, )
X|N =n ~ Bin(n,p)

So F[X], the expected number of people participating in the survey satisfies

B[X] = E[E[X|N]] = E[Np] = pE[N] = pMn
or by doing the algebra

= i np<]\7f>7r”(1 —m)Mn
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Theorem. Variance Decomposition
Var(X) = Var(E[X|Y]) + E[Var(X|Y)]

; Var(X) = Var(g(Y)) + E[h(Y)

What this result is implying, when considering the spread of a random

variable in the presence of another random variable (say a grouping variable),
their are two important factors

1. How spread out are the means of the different groups — Var(FE|[X|Y])
term

2. How spread out are the observations within each group — E[Var(X|Y)]
term

(This decomposition underlies Analysis of Variance (ANOVA))
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Proof.
Var(X|Y = y) = E[X?|Y = y] — (E[X|Y = y])?

SO

h(y) = E[X?|Y =y] — (9(y))*

Eh(Y)] = E[E[X?]Y]] - E[(g(Y))’]
= E[X®] = (Var(g(Y)) + (E[g(Y)])?)
= B[X?] - Var(g(Y)) — (E[X])"
= Var(X) — Var(g(Y))
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Back to exponential example (E[X|Y] = Y? Var(X|Y) = Y*)

Var(X) =F
=k
=k

Var(X|Y)] + Var(E| X Y])
Y4 + Var(Y?)

YU+ (BE[Y] - (B[Y?])?)

— 92 x4l —92%2 =44

since

E[Y*] = / y e Vdy =T(k+ 1) = k!
0

Conditional Expectation
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Binomial Example (E[X|N] = Np, Var(X|N) = Np(1 — p), E[N] =
Mmn,Var(N) = Mz (1 — 1))

Var(X) = E[Var(X|N)] + Var(E[X|N])
= E[Np(1 — p)] + Var(Np)
= p(1 — p) E[N] + p*Var(N)
=p(l — p)M7 +p*Mn(1 — )
= prM — p*mM + p*nM — p*n*M = Mpr(1 — pr)

Actually we already knew this result since we've shown that
X ~ Bin(M, pr)

Conditional Expectation 15



These two results can make difficult moment calculations easy to do. For
example, the initial example

1
flx,y) = —Qe_w/y2€_y; r >0,y >0
y
SO
fly) =e7?
I .2
flzly) = 7 v (X|Y =y ~ Exp(1/y?))

getting the marginal density of X is not easy (its absolutely ugly).

Even though we couldn’t calculate the integrals directly, we can still
determine the moments of the marginal distribution.

They also allow us to think in terms of hierarchical models, building pieces
one on top of the other.
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Note that the examples so far have either been all discrete RVs or all
continuous RVs. There i1s no reason to restrict to these cases. You can
have a mixture of continuous and discrete RVs.

For example, a more specific case of the random sums (example D on page
138) would be

N ~ Pois(u)
TIN =n ~ ZXi where X; ~ Gamma(a, \)

1=1

~ Gamma(na, )

So
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Var(T) = Var(E[T|N]) + E[Var(T|N)]

Q Q
v (45) 2]
Var( ; + 2

« 87 «
:ﬁ,u*‘pﬂz,up(oﬁ‘l)

The factor o + 1 tells us how much the variance gets increased due to our

lack of knowledge of IV, the number of terms summed.

In this example, the conditioning variable was discrete and the variable of
interest was continuous. Note that we can go the other way as well.

A~ Exp(u)
X|A ~ Pois(\)
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This model comes about in the situations that we expect that a count
should have a Poisson distribution, but we aren’t sure of the rate. So we
can describe our uncertainty about the rate with a probability distribution.
One choice is a exponential distribution (Gamma is a more popular choice).

B[\ = %;Var()\) -

B[X] = E[E[X|A] = B[ = —

Var(X) = Var(FE[X|)\]) + E[Var(X|\)]
= Var(\) + E[)]
1 1
"2

The extra <5 term is the extra uncertainty in X due to not knowing the

exact mean of the Poisson distribution.
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Note that in these situations, we can figure out the marginal and conditional
distribution that aren’t given. For the second Poisson/Gamma example, the
joint “density” is given by

fX,A(aj7)‘):pX|)\(x|)\)f>\()\)7 x2071727°'°7)‘>0
So the marginal PMF of X is given by

px(ﬂﬁ):/o fX,A(«Ta)\)d)\

A" —A(1+p)
— € d)\
/O SRS
_ P . _
_(1—|—,Lt)x+17 x=0,1,2,...

(Aside: Note that this distribution is related to the Geometric distribution
with success probability ﬁ Here x would correspond to the number of

“failures” before the first “success”.)
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and the conditional density of A\|X = x is

fxa(,A) _ AL+ p)™

P == @ T T

so A\ X =z~ Gamma(x+1,u+1)

€

—A(1+p).

)

A>0

Conditional Expectation
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Optimal Prediction

A probability distribution gives a measure of knowledge or believe about a
random process of interest. However in many situations it is often useful to
be able to come up with a single prediction of what we might observe if we
were to generate a new realization of the process.

Examples:

e In the SST example, the model gives us a probability distribution for the
temperature at different locations in the tropical Pacific. For forecasting

purposes it is useful to have a single temperature prediction for each
location

November 2004

~Y
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e Uncertain binomial success probabilities

We want to sample from a population consisting of two type of members
(John McCain voters and Hilary Clinton voters). However the fraction
of the two types is unknown (p: fraction of McCain voters, ¢ = 1 — p:
fraction of Clinton voters). So we can take a sample of size n from the
population to learn about p and ¢. Suppose that we have a prior belief
about what p might be given in the form of a probability distribution.

Xl|p ~ Bin(n, p)
p ~ Beta(a,b)  (Prior belief)

We want to use the observed data x and the prior belief to come up with
our best guess for p.
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<aside> The joint “density” of X and p is

fxp(@,p) = (Z)pw(l —p)" T X

r=20,1,...,n,0<p<1

The marginal PMF of X is

X

o= ()5

This is known as the Beta-Binomial distribution. The conditional density
of p|X =x is

1
a+zx,b+n—=x

b+n—x—1.

el (1—p) . 0<p<1

fp|X(p|x) — B( )p

Optimal Prediction 24



e, Y|X =x ~ Beta(a+x,b+n—x). </aside>

What should be use as a predictor? We want something that picks something
that is close to values of the random variable Y that are highly probable.
We need a criterion that measures how well we do if our prediction is the
value ¢. A popular choice is the mean squared error (MSE)

MSE(c) = E[(Y — ¢)?]

03 04

f(x)

00 01 0.2
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Theorem. Under the MSE criterion, the optimal predictor is ¢ = E|Y].

Proof.
E[(Y —¢)?] = Var(Y —¢) + (E]Y —¢])? = Var(Y) + (u — ¢)?

The variance piece doesn’t depend on our choice of predictor, so we only need
to minimize the second term, which is done by setting ¢ = p = E[Y]. O

Note that we often have other information available that we want to include.

e In the SST example, we have the past temperatures, the wind and
pressure data.

e In the sampling example, we have the poll data X.

So in this case, we need to choose a function h(X) to minimize
MSE(h(X)) = E[(Y — h(X))?]
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Note that

E[(Y — h(X))?] = E[E[(Y — h(X))?X]]
So by the previous theorem, for each fixed x, the inner expectation

E[(Y — h(X))?|X = z| is minimized by h(z) = E[Y|X = z], thus the
minimizing function is

hX) = E[Y|X]

So for the polling example, our best guess for p is a:’[gfn which is the

mean of a Beta(a + x,b+ n — x). Note that this happens to be between
the forecast based on the prior —%— and the sample proportion of McCain

- a-+b
Su pporters "

Now let X and Y be bivariate normal. Then

o)
EY|X] = py + pé(X — px) =a+ X
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Now in many problems, the conditional mean of Y| X = x can be difficult
to work with. So instead of trying to find the best function, lets try to find
a function from a restricted class, such as linear predictors (h(z) = a+ Bx).

Want to find the best choices for o and (3, that is choose them to minimize

MSE(a, 8) = E[(Y — (a + 8X))?]

One way to choose them would be the find the gradient, set it to 0, and
solve. Instead we can do it another way that doesn’'t need multivariate
calculus.

E[(Y — (a+ X))’] = Var(Y — (o + 8X)) + (E[Y — (a + X)])?
= Var(Y — 8X) + (E[Y — (a + 8X)])?

As the first term doesn't depend on «, we can figure out what the best
choice for it is for each possible 3, and then get the best 3.
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Note that the second term can be made to be zero by setting

a=py — Bux

The first term is

Var(Y — 6X) = O'%/ + 520_3( — 200xy

where oxy = Cov(X,Y'). This variance is minimized by setting

6_O-XY_ Oy
— 5 = p—
O'X OXx

Plugging these values in o and 3 gives the minimum mean squared error
linear predictor

~ o
Y=a+ﬁX=uy+pé(X—ux)
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Note that for this linear predictor, we don't need to know the complete
conditional distribution. Instead we need to know the marginal means and
variances, and the correlation (or covariance).

Note that this result supports the idea that the correlation is a measure of
the strength of the linear relationship between two variables.

While we are looking for a single prediction of the random variable of
interest, it is useful to also have a measure of uncertainty about that
prediction. The usual choice is the variance, as for the optimal predictor

MSE(h(X)) = Var(Y — h(X)) = E[Var(Y|X)]
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For the linear predictor

o o
2 XY 2 XY
Var(Y—ﬁX):aer 1 oy — 2 5 0XY
0x Ox
2
_ 2 Oxy
Ox

= oy — ploy = oy (1 —p°)

Again, this doesn't depend on the conditional distribution, but only the first
two moments of X and Y. Note that this is Var(Y|X) if X and Y are
bivariate normal, which is to be expected as the linear predictor is also the
optimal predictor in that case.

These mathematical arguments help support the wide use of linear regression
techniques for many problems.
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Note that other optimality criteria can be used. For example, the Mean
Absolute Deviation (MAD)

MAD(MX)) = E[|]Y — h(X)]]

leads to h(x) being the median of the distribution of Y| X = x.

What's known as 0-1 loss leads to the mode of the distribution of Y| X = z,
the y with the largest density (continuous) or probability (discrete).

These tend to be used less, as mathematically they are less tractable,
particularly if you wish to restrict h(x) to the class of linear predictors. For
example, with the MAD criterion,

ElY — (a+ X)]]

is difficult to optimize since the function |z| is not differentiable at 0.

Optimal Prediction 32



Also the variance is not the best choice for our uncertainty measure of the
predictor. Something based on a MAD type measure or an interquartile
range would be more appropriate, though the variance is still of use.

Also the MSE based predictors have been shown to work well over time.

Also for some problems, linear predictors won't work well. For example
suppose you want to predict a random variable restricted to the range (0,1).
A linear predictor may not work well, as eventually a4+ X must go outside
the range (0,1). A possible predictor in that case could have the form

ea—l—ﬁx

h([lﬁ) — 14+ ea—l—ﬁx
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