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Moments Revisited

So far I’ve really only talked about the first two moments. Lets define what
is meant by moments more precisely.

Definition. The rth moment of a random variable X is E[Xr], assuming
that the expectation exists.

So the mean of a distribution is its first moment.

Definition. The r central moment of a random variable X is
E[(X − E[X])r], assuming that the expectation exists.

Thus the variance is the 2nd central moment of distribution.

The 1st central moment usually isn’t discussed as its always 0.

The 3rd central moment is known as the skewness of a distribution and is
used as a measure of asymmetry.
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If a distribution is symmetric about its mean (f(µ − x) = f(µ + x)), the
skewness will be 0. Similarly if the skewness is non-zero, the distribution
is asymmetric. However it is possible to have asymmetric distribution with
skewness = 0.

Examples of symmetric distribution are normals, Beta(a, a), Bin(n, p =
0.5). Example of asymmetric distributions are

Distribution Skewness

Bin(n, p) np(1− p)(1− 2p)

Pois(λ) λ

Exp(λ) 2
λ

Beta(a, b) Ugly formula

The 4th central moment is known as the kurtosis. It can be used as a
measure of how heavy the tails are for a distribution. The kurtosis for a
normal is 3σ4.
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Note that these measures are often standardized as in their raw form they
depend on the standard deviation.

Theorem. If the rth moment of a RV is exists, then the sth moment
exists for all s < r. Also the sth central moment exists for all s ≤ r.

So you can’t have a distribution that has a finite mean, an infinite variance,
and a finite skewness.

Proof. Postponed till later. 2

Why are moments useful? They can be involved in calculating means and
variances of transformed RVs or other summaries of RVs.

Example: What are the mean and variance of A = πR2

E[A] = πE[R2]

Var(A) = π2Var(R2) = π2
(
E[R4]− (E[R2])2

)

So we need E[R4] in addition to E[R] and E[R2].
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Example: What is the skewness of X?

E[(X − µ)3] = E[X3 − 3µX2 + 3µ2X − µ3] = E[X3]− 3µE[X2] + 2µ3

so E[X], E[X2], and E[X3] are needed to calculate the skewness.
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Moment Generating Function

Definition. The Moment Generating Function (MGF) of a random
variable X, is MX(t) = E[etX] if the expectation is defined.

MX(t) =
∑

x

etxpX(x) (Discrete)

MX(t) =
∫

X
etxfX(x)dx (Continuous)

Whether the MGF is defined depends on the distribution and the choice of
t. For example, the MX(t) is defined for all t if X is normal, defined for no
t if X is Cauchy, and for t < λ if X ∼ Exp(λ).

For those that have done some analysis, for the continuous case, the
moment generating function is related to the Laplace transform of the
density function. Many of the results about it come from that theory.
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Why should we care about the MGF?

• To calculate moments. It may be easier to work with the MGF than to
directly calculate E[Xr].

• To determine distributions of functions of random variables.

• Related to this, approximating distributions. For example can use it
to show that as n increases, the Bin(n, p) “approaches” a normal
distribution.

The following theorems justify these uses of the MGF.
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Theorem. If MX(t) of a RV X is finite in an open iterval containing 0,
then it has derivatives of all orders and

M
(r)
X (t) = E[XretX]

M
(r)
X (0) = E[Xr]

Proof.

M
(1)
X (t) =

d

dt

∫ ∞

−∞
etxfX(x)dx

=
∫ ∞

−∞

(
d

dt
etx

)
fX(x)dx

=
∫ ∞

−∞
xetxfX(x)dx

= E[XetX]
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M
(2)
X (t) =

d

dt
M

(1)
X

=
∫ ∞

−∞
x

(
d

dt
etx

)
fX(x)dx

=
∫ ∞

−∞
x2etxfX(x)dx = E[X2etX]

The rest can be shown by induction. The second part of the theorem follows
from e0 = 1. 2

Another way to see this result is due to the Taylor series expansion of

ey = 1 + y +
y2

2!
+

y3

3!
+ . . . ,

which gives
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MX(t) = E

[
1 + Xt +

X2t2

2!
+

X3t3

3!
+ . . .

]

= 1 + E[X]t + E[X2]
t2

2!
+ E[X3]

t3

3!
+ . . .

Example MGFs:

• X ∼ U(a, b)

MX(t) =
∫ b

a

etx

b− a
dx =

ebt − eat

(b− a)t
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• X ∼ Exp(λ)

MX(t) =
∫ ∞

0

etxλe−λxdx =
∫ ∞

0

λe−(λ−t)xdx =
λ

λ− t

Note that this integral is only defined when t < λ

• X ∼ Geo(p), (q = 1− p)

MX(t) =
∞∑

x=1

etxpqx−1 = pet
∞∑

x=1

(et)x−1qx−1 =
pet

1− qet

• X ∼ Pois(λ)

MX(t) =
∞∑

x=0

etxe−λλx

x!
= e−λ

∞∑
x=0

(etλ)x

x!
= eλ(et−1)
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Examples of using the MGF to calculate moments

• X ∼ Exp(λ)

M (1)(t) =
λ

(λ− t)2
; E[X] =

1
λ

M (2)(t) =
2λ

(λ− t)3
; E[X2] =

2
λ2

M (r)(t) =
Γ(r + 1)λ
(λ− t)r+1

; E[Xr] =
Γ(r + 1)

λr
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• X ∼ Geo(p), (q = 1− p)

M (1)(t) =
pet

1− qet
+

pqe2t

(1− qet)2
; E[X] =

1
p

M (2)(t) =
pet

1− qet
+

3pqe2t

(1− qet)2
+

2pq2e3t

(1− qet)3
; E[X2] =

5− 6p + 2p2

p

Theorem. If Y = a + bX then

MY (t) = eatMX(bt)

Proof.

MY (t) = E[etY ] = E[eat+btX] = eatE[e(bt)X] = eatMX(bt)

2
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For example, this result can be used to verify the result that
E[a + bX] = a + bE[X] as

M
(1)
Y (t) = aeatMX(bt) + beatM

(1)
X (bt)

M
(1)
Y (0) = aMX(0) + bM

(1)
X (0) = a + bE[X]

Theorem. If X and Y are independent RVs with MGFs MX and MY and
Z = X + Y , then MZ(t) = MX(t)MY (t) on the common interval where
both MGFs exist.

Proof.

MZ(t) = E[etZ] = E[et(X+Y )] = E[etXetY ]

= E[etX]E[etY ] = MX(t)MY (t)

2

By induction, this result can be extended to sums of many independent
RVs.
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One particular use of this result is that it can give an easy approach to
showing what the distribution of a sum of RVs is without having the
calculate the convolution of the densities. But first we need one more
result.

Theorem. [Uniqueness theorem] If the MGF of X exists for t in an
open interval containing 0, then it uniquely determines the CDF.

i.e no two different distributions can have the same values for the MGFs on
an interval containing 0.

Proof. Postponed 2

Example: Let X1, X2, . . . , Xn be iid Exp(λ). What is the distribution of
S =

∑
Xi

MS(t) =
n∏

i=1

λ

λ− t
=

(
λ

λ− t

)n
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Note that this isn’t the form of the MGF for an exponential, so the sum
isn’t exponential. As shown in Example B on page 145, the MGF of a
Gamma(α, λ) is

M(t) =
(

λ

λ− t

)α

so S ∼ Gamma(n, λ)

This approach also leads to an easy proof that the sum of independent
normals is also normal. The moment generating function for N(µ, σ2) RV

is M(t) = eµt+σ2t2/2. So if Xi
iid∼ N(µi, σ

2
i ), i = 1, . . . , n, then

MP
Xi

=
n∏

i=1

eµit+σ2
i t2/2 = exp(t

∑
µi + t2/2

∑
σ2

i )

which is the moment generating function of a N(
∑

µi,
∑

σ2
i ) RV.

There is one important thing with this approach. We must be able to
identify what MGF goes with each density or PMF.
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For example, let X ∼ Gamma(α, λ) and Y ∼ Gamma(β, µ) be
independent. Then the MGF of Z ∼ X + Y is

MZ(t) =
(

λ

λ− t

)α (
µ

µ− t

)β

This is not the MGF of a gamma distribution unless λ = µ.

In fact I’m not quite sure what the density looks like beyond

fZ(z) =
∫ ∞

0

λαxα−1e−λx

Γ(α)
µβ(z − x)β−1e−µ(z−x)

Γ(β)
dx

You can sometimes use tables of Laplace transforms or doing some
complicated complex variable integration to invert the MGF to determine
the density or PMF.

While we can’t get the density easily in this case, we can still use the MGF
to get the moments of this distribution.
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It is also possible to work with more complicated situations described by
hierarchical models. Suppose that the MGFs for X(MX(t)) and
Y |X = x (MY |X(t)) are known. Then the marginal MGF of Y is

MY (t) = E[etY ] = E[E[etY |X]] = E[MY |X(t)]

For example, this could be used to get the MGF of the Beta-Binomial
model.

Another situation where this is useful is with a random sums model where

S =
N∑

i=1

Xi

and N is random. Then the MGF of S is given by

MS(t) = E[E[etS|N ]] = E[(MX(t))N ]

= E[eN log MX(t)] = MN(log MX(t))
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An example of this model is

S|N = n ∼ Bin(n, p)

(
=

N∑

i=1

Bern(p)

)

N ∼ Pois(λ)

MX(t) = 1− p + pet

MN(t) = eλ(et−1)

So the moment generating function for S is

MS(t) = MN(logMX(t))

= exp(λ(elog(1−p+pet)−1))

= exp(λ(1− p + pet)e−1)
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Another example is the compound Poisson model discussed in the text.

The MGF is also defined for joint distributions. It has the form

MX,Y (s, t) = E[esX+tY ]

It has similar properties as the univariate case. For example the mixed
moments are given by

E[XnY m] =
∂n+m

∂xn∂ym
MX,Y (0, 0)

The marginal MGFs can be determined directly from the joint MGF as

MX(s) = MX,Y (s, 0); MY (t) = MX,Y (0, t)

Also X and Y and independent if and only if MX,Y (s, t) = MX(s)MY (t).
This relates to the idea that if X and Y are independent so are g(X) = esX

and h(Y ) = etY .
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