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Approximating Distributions

As we’ve seen so far, it can be useful to approximate quantities, such as

• Bounding probabilities by inequalities.

• Bounding moments by functions of other moments.

• Predictions with linear predictors instead of conditional means

• Using Monte Carlo to approximate moments

• Distributions by other distributions (Central Limit Theorem, Binomial by
Normal, etc) [well sort have seen this :) ]
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Example: Suppose that the radius of a circle is a RV R ∼ Gamma(α, β).
What are the mean and variance of the circle’s area?

Since the area is given by A = πR2, we could answer this question if we
knew the distribution of Y = R2 = g(R).

The inverse function is g−1(Y ) =
√

Y . Thus we can get the density by
noting

d

dY
g−1(Y ) =

dR

dY
=

1
2
√

Y

So the density of Y is

fY (y) = fR(g−1(y))
∣∣∣∣
dR

dY

∣∣∣∣ =
βα(

√
y)α−1

Γ(α)
e−β

√
y 1
2
√

y

=
βαyα/2−1

2Γ(α)
e−β

√
y; y > 0
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This is something we haven’t seen before so we can’t plug into a known
mean and variance formula. Let’s try getting the mean and variance by
integrating

E[Y n] =
∫ ∞

0

ynβαyα/2−1

2Γ(α)
e−β

√
ydy

=
∫ ∞

0

βαyα/2+n−1

2Γ(α)
e−β

√
ydy

This doesn’t look like a particularly nice integral for any n, so we need to
try something else.
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Idea: Approximate by Taylor series.

General approach:

Suppose that the RV X has E[X] = µ and Var(X) = σ2 and g(x) is a
twice continuously differentiable (i.e. g′′(x) exists and is continuous). Then

g(x) ≈ g(µ) + g′(µ)(x− µ)

This suggests that

E[g(X)] ≈ E[g(µ) + g′(µ)(X − µ)] = g(µ)

and

Var(g(X)) ≈ Var(g(µ) + g′(µ)(X − µ)) = (g′(µ))2Var(X)
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Note that these approximations can be improved by taking more terms in
the Taylor series approximation. For example, if we add one more term,

E[g(X)] ≈ E

[
g(µ) + g′(µ)(X − µ) +

1
2
g′′(µ)(X − µ)2

]
= g(µ)+

1
2
g′′(µ)σ2

and

Var(g(X)) ≈ Var(g(µ) + g′(µ)(X − µ) +
1
2
g′′(µ)(X − µ)2)

= (g′(µ))2Var(X) +
1
4
(g′′(µ))2(Var(X2)− 4µ2σ2)

(This approximation for the variance is rarely used as it involves knowing
Var(X2) or equivalently E[X4].)

The accuracy of these approximations depends on how close the function is
to linear (or quadratic) over the range of the RV that has high probability.
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So for the circle example, A = g(Y ) = πR2. Thus g′(R) = 2πR and recall
that E[R] = α

β , Var(R) = a
β2. So these give

E[A] ≈ g

(
α

β

)
= π

α2

β2

and

Var(A) ≈
(

g′
(

α

β

))2

Var(R) =
(

2π
α

β

)2
α

β2
= 4π2α

3

β4

Some of you may have noticed that I told a fib earlier. In fact, it is
possible to calculate E[Y ] = E[R2] and E[Y 2] = E[R4] using the variable
substitution u =

√
y
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Thus the true mean and variance are

E[A] = π
α(α + 1)

β2
= Approximation + π

α

β2

Var(A) = π24α3 + 10α2 + 6α

β4
= Approximation + π210α2 + 6α

β4

Suppose that α = 100, β = 10, E[R] = 10, Var(R) = 1

Truth Approximation Abs. Error Rel. Error

E[A] 101π 100π π 0.99%

Var(A) 410.06π2 400π2 10.06π2 2.45%
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What happens if we use the second order approximation to g(µ)+ 1
2g
′′(µ)σ2.

In this example, g′′(R) = 2π

E[A] ≈ g

(
α

β

)
+

1
2
g′′

(
α

β

)
α

β2
= π

α2

β2
+

1
2
2π

α

β2
= π

α(α + 1)
β2

So in this case, it isn’t an approximation, but the true value. Actually this
has to be the case for this example. Since g(R) is a quadratic function, the
2nd order Taylor series must give the actual function, i.e.

x2 = µ2 + 2µ2(x− µ) + (x− µ)2

For the same reason, the second order approximation to the variance will
also give the true value in this case as well.
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This idea can be extended to give approximate distributions as well.

Suppose X ∼ N(µ, σ2) and we are interested in the distribution of Y =
g(X) for some function g. Applying the same Taylor series approach gives

Y = g(X) ≈ g(µ) + g′(µ)(X − µ)

Which suggests Y is approximately normally distributed with mean g(µ)
and variance (g′(µ))2σ2. (This approach is sometimes known as the delta
rule.)

For example, let Y = eX. So g′(X) = eX so Y is approximately
N(eµ, e2µσ2).

Note that Y actually has a lognormal distribution with E[Y ] = eµ+0.5σ2
and

Var(Y ) = e2µ+σ2
(eσ2 − 1). If σ2 is small, eµ+0.5σ2 ≈ eµ and e2µ+σ2

(eσ2 −
1) ≈ e2µσ2. However this approximation breaks down as σ increases.
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As with the moment approximations, the accuracy of this approximation
depends on how linear the function over the range of high probability of X.
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Note while this example is based on a transformation of a normal RV, the
can be used with any distribution. It tends to work best with location-scale
distributions and the transformations of normal distributions is the most
common use of this technique. Also higher order Taylor series can be used,
though the calculations can be ugly.

These ideas can be extended to dealing with functions of multiple RVs.
Suppose that Z = g(X,Y ), where g is twice differentiable. Then

Z = g(X, Y ) ≈ g(µ) +
∂g(µ)
∂x

(X − µX) +
∂g(µ)

∂y
(Y − µY )

(where µ = (µX, µY )) which gives

E[Z] ≈ g(µ)

and

Var(Z) ≈
(

∂g(µ)
∂x

)2

σ2
X +

(
∂g(µ)

∂y

)2

σ2
Y +

(
∂g(µ)
∂x

)(
∂g(µ)

∂y

)
σXY
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The second order Taylor expansion

Z = g(X, Y ) ≈ g(µ) +
∂g(µ)
∂x

(X − µX) +
∂g(µ)

∂y
(Y − µY )

+
1
2
∂2g(µ)
∂x2

(X − µX)2 +
1
2
∂2g(µ)

∂y2
(Y − µY )2

+
∂2g(µ)
∂x∂y

(X − µX)(Y − µY )

gives

E[Z] ≈ g(µ) +
1
2
∂2g(µ)
∂x2

σ2
X +

1
2
∂2g(µ)

∂y2
σ2

y +
∂2g(µ)
∂x∂y

σXY

and something really ugly for Var(Z).
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For example, if g(X, Y ) = 1
2XY 2,

∂g(µ)
∂x

=
µ2

Y

2
;

∂g(µ)
∂y

= µXµY

which gives

E[Z] ≈ µXµ2
Y

2

and

Var(Z) ≈ µ4
Y

4
σ2

X + µ2
Xµ2

Y σ2
Y +

µXµ2
Y

2
σXY

The second order approximation to the mean needs

∂2g(µ)
∂x2

= 0;
∂2g(µ)

∂y2
= µX;

∂2g(µ)
∂x∂y

= µY
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which gives

E[Z] ≈ µXµ2
Y

2
+

µX

2
σ2

Y + µY σXY

Example (C from Section 4.6): Z = g(X, Y ) = Y
X

As noted in the text, the necessary partial derivatives are:

∂g

∂x
=
−y

x2
;

∂g

∂x
=

1
x

∂2g

∂x2
=

2y

x3
;

∂2g

∂y2
= 0;

∂2g

∂x∂y
=
−1
x2
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The two approximations to the mean of Z are

• First order:
E[Z] =

µy

µx

• Second order:

E[Z] =
µy

µx
+ σ2

x

µy

µ3
x

− σxy

µ2
x

=
µy

µx
+

1
µ2

x

(
σ2

x

µy

µx
− σxy

)

Let’s assume that µx 6= 0, which implies both approximations to E[Z] are
well behaved.

Approximating Distributions 16



Now let’s assume that fX(0) > 0 (continuous RV) or pX(0) > 0 (discrete
RV). It is possible to show that E[Z] = ∞. So these approximations can
break down.

However in this setting, if |µx| >> σx, there often is a distribution with
mean

E[Z] =
µy

µx
+ σ2

x

µy

µ3
x

− σxy

µ2
x

=
µy

µx
+

1
µ2

x

(
σ2

x

µy

µx
− σxy

)

that approximates the distribution of Z well.
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Note that an approximation to the variance based on the second order
Taylor expansion can be made. It will involve up to 4th moments.

Also this idea can be used to get approximate distributions of functions of
random variables. Its particularly common when X and Y are bivariate
normal. The result of this is that g(X,Y ) is approximately normal with the
mean and variance given by

E[Z] ≈ g(µ)

and

Var(Z) ≈
(

∂g(µ)
∂x

)2

σ2
X +

(
∂g(µ)

∂y

)2

σ2
Y +

(
∂g(µ)
∂x

)(
∂g(µ)

∂y

)
σXY
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Note that so far that the Taylor series approximations are done around the
mean of X. However they don’t need to be done there.

Instead it might make more sense to do it around a different point, such as
where g′(x) = 0. It depends on what you are trying to do. However around
the mean is the usual approach.
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