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Limit Theorems

Next is to look at the properties of a sequence of random variables
Y1, Y2, Y3, . . .. For example, what happens to

Yn = X̄n =
1
n

n∑

i=1

Xi

or

Yn = S2
n =

1
n− 1

n∑

i=1

(Xi − X̄n)2

or
Yn = min(X1, . . . , Xn)

as n →∞.
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Definition. A sequence of RVs Yn, n = 1, 2, 3, . . . is said to Converge in

Probability to a constant c (denoted by Yn
P−→ c), if for any ε > 0,

P [|Yn − c| ≥ ε] → 0

as n →∞.

In other words, if I is any interval containing c, then eventually Yn will have
most of its probability concentrated in I.

Theorem. [Weak Law of Large Numbers] Let X1, X2, . . . be independent
RVs with E[Xi] = µ and Var(Xi) = σ2 < ∞ and

X̄n =
X1 + X2 + . . . + Xn

n

Then X̄n
P−→ µ.
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Proof. As shown earlier, E[X̄n] = µ and Var(X̄n) = σ2

n . Thus by
Chebyshev’s inequality

P [|X̄n − µ| ≥ ε] ≤ Var(X̄n)
ε2

=
σ2

nε2
→ 0

2

Note that the restriction of a finite variance can be relaxed, though for most
problems that isn’t necessary.

Theorem. Let X1, X2, . . . be independent RVs with E[Xi] = µi and
Var(Xi) = σ2

i < ∞. If

Var(X̄n) =
1
n2

n∑

i=1

σ2
i =

σ2

n
→ 0

Then X̄n
P−→ µ̄ (or (X̄n − µ̄) P−→ 0)
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Lemma. Suppose that g(t) is a function that is continuous at t = c and

that Xn
P−→ c. Then g(Xn) P−→ g(c).

Xn

g(
X

n)

c − δ c + δc

g(
c)

−
ε

g(
c)

+
ε

g(
c)

Proof.

To see this, let Zn = g(Xn).
Since g(·) is a continuous
function, for any fixed ε > 0,
there exists a δ > 0 such that

|Xn−c| ≤ δ =⇒ |Zn−g(c)| ≤ ε

Therefore,

P [|Zn−g(c)| ≤ ε] ≥ P [|Xn−c| ≤ δ] → 1

2
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The continuity assumption is important. If g(·) is not continuous at c, then
we may not be able to find such a δ.

Example: Suppose

Yn =

{
1
n with prob 1− 1√

n

−n with prob 1√
n

Then P [|Yn − 0| > ε] = 1√
n

for n > 1
ε hence Yn

P−→ 0.

Let

g(y) =

{
1 if y > 0
0 if y ≤ 0

Then
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g(Yn) =

{
1 with prob 1− 1√

n

0 with prob 1√
n

Which implies g(Yn) P−→ 1 6= g(0). This is due to g being discontinuous at
0.

Example: Let Xn ∼ Bin(n, p) and let p̂n = Xn
n .

E[p̂n] =
E[Xn]

n
=

np

n
= p

Var(p̂n) =
Var(Xn)

n2
=

np(1− p)
n2

=
p(1− p)

n

As Var(p̂n) → 0 as n → ∞, p̂n
P−→ p. This result can also be seen from

the law of large numbers, as pn is the sample average of n iid Bern(p).
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This result supports the idea of treating probability as long run frequencies.
Let A be the event of interest and Zi be the indicator variable of whether
outcome i fall in set A or not. As we have seen before P [A] = P [Zi =
1] = p. p̂n is the sample relative frequency after n trials which converges
to P [A].
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We can use the lemma to show what happens to the common estimate of
a Bernoulli variance. Let g(t) = t(1 − t). As this is a continuous function
on [0, 1],

g(p̂n) = p̂n(1− p̂n) P−→ p(1− p) = Var(Zi)

The previous plot contains two examples of Monte Carlo integration. Let
g(x) = I{x ≤ 0.35} where Xi ∼ U(0, 1). The last point of each line is
calculated by

Î(g) =
1
n

n∑

i=1

g(Xi)

which is an estimate of the quantity

I(g) =
∫ 1

0

g(x)dx = E[g(X)]
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which by the law of large numbers, Î(g) converges in probability to I(g)

Monte Carlo is usually used to calculate difficult integrals (or expected
values)

For example, the book discusses calculating

1√
2π

∫ 1

0

e−x2/2dx = Φ(1)− Φ(0)

by Monte Carlo.

We have seen another example of Monte Carlo. The forecast SST maps
were also calculated by Monte Carlo. They were based on the following
setup.

Assume that X has density f(x) and suppose you are interested in

E[g(X)] =
∫

X
g(x)f(x)dx
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This can be estimated by generating X1, X2, . . . , Xn from density f(x) by
calculating

Î(g) =
1
n

n∑

i=1

g(Xi)

which by the law of large numbers, this converges in probability to E[g(X)].

In the temperature maps, for a pixel in the map g(x) = x, where x is the
temperature in that pixel.
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Lemma. If Xn
P−→ c and Yn

P−→ d and g(x, y) a continuous function in

a neighbourhood containing the point (c, d), then g(Xn, Yn) P−→ g(c, d).

For example, we can use this to prove that the sample variance S2
n converges

in probability to Var(Xi) = σ2.

S2
n =

1
n− 1

n∑

i=1

(Xi − X̄n)2 =
1

n− 1

(
n∑

i=1

X2
i − nX̄2

n

)

=
n

n− 1

(
1
n

n∑

i=1

X2
i − X̄2

n

)

P−→ E[X2]− (E[X])2 = Var(X)

As shown, some of the probability bounds can be fairly loose. It is possible,
if necessary, to get tighter bounds by looking at higher moments. For
example, suppose Xi’s are iid with E[Xi] = 0 and Var(Xi) = σ2.
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By Chebyshev,

P [|X̄n| ≥ a] ≤ σ2

na2
→ 0

at a rate of 1
n. However we can do better. Assume that E[X4

i ] is finite.

E[X̄4
n] =

1
n4

E[(X1 + X2 + . . . + Xn)4]

=
1
n4


∑

i

E[X4
i ] +

∑

i 6=j

E[X3
i Xj] +

∑

i 6=j

E[X2
i X2

j ]

+
∑

i 6=j 6=k

E[X2
i XjXk] +

∑

i 6=j 6=k 6=l

E[XiXjXkXl]
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E[X̄4
n] =

1
n4

[
nE[X4

i ] +
n(n− 1)

2
(E[X2

i ])2
]

P [|X̄n| ≥ a] = P [|X̄n|4 ≥ a4]

≤ E[X̄4
n]

a4
=

n− 1
2n3

σ4

a4
+

1
n3

E[X4
i ]

a4

≤ 1
n2

σ4

a4
+

1
n3

E[X4
i ]

a4
→ 0

at a rate of 1
n2.

Being able to show convergence at higher rates can be useful for
more complicated problems. Examples where this may occur include
nonparametric regression, stochastic processes such as Brownian motion,
and Markov Chain Monte Carlo. The following example gives a flavour of
the advantages to be able to use higher rates of convergence.
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Suppose you have multiple sequences of random variables where

X1n
P−→ c1, X2n

P−→ c2, . . . , Xin
P−→ ci, . . .

and you are interested in
∑n

i=1 Xin as n →∞.

If each converges only at a rate of only 1
n, the sum of the probabilities may

not go to 0 (n terms of order 1
n). However if each converges at a rate of

1
n2, the sum of the probabilities will go to 0 at a rate of at least 1

n.

If a moment generating function exists (thus all moments exists) you can
get even tighter bounds.

Theorem. [Chernoff bound] Assume that RV X has a MGF MX(t).
Then

P [X ≥ a] ≤ e−taMX(t) for t > 0

P [X ≤ a] ≤ e−taMX(t) for t < 0
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Proof. For t > 0,

P [X ≥ a] = P [etX ≥ eta] ≤ E[etX]
eta

= e−taMX(t)

For t < 0

P [X ≤ a] = P [etX ≥ eta] ≤ E[etX]
eta

= e−taMX(t)

2

Note that we get a different bound for each different t, so, if possible, we
want to find which t will minimize the probability bound.

Example (back to the Widgets). Lets assume that X ∼ N(500, 100). What
is a bound on P [X > 550]. The MGF for this normal is

MX(t) = e500t+50t2
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P [X > 550] ≤ e500t+50t2

e550t
= e50(t2−t)

This will be minimized by the t which minimizes t2 − t, which happens to
be t = 0.5. Thus

P [X > 550] ≤ e−12.5 = 0.00000372

As seen before P [X > 550] = 0.000000287, so this is much closer than the
one-sided Chebyshev bound of 0.0384 (a factor of 10 not 10,000).
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Types of Convergence

There are different types of convergence of a random variable to a constant
c. The most important are

1. Convergence almost surely (sometimes called almost everywhere or with
probability 1)

Xn
a.s.−→ c ⇐⇒ For any ε > 0, P [|Xn − c| > ε only finitely often] = 1

So eventually Xn gets within ε of c and never leaves, but when this
happens is random.

2. Convergence in probability

Xn
P−→ c ⇐⇒ For any ε > 0, P [|Xn − c| < ε] → 1
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Example: Let ω ∼ U(−1, 1) and

Yn(ω) =

{
−n −1√

n
< ω < 1√

n
1
n Otherwise

Then

• P [|Yn − 0| > ε] → 0. Hence Yn
P−→ 0.

• For any ω 6= 0, Yn(ω) → 0. Hence Yn
a.s.−→ 0.

Note that E[Yn] = −n 1√
n

+ 1
n(1− 1√

n
) ≈ −√n → −∞ 6= 0

Hence in general Yn
a.s.−→ c does not imply E[Yn] → c.

Stronger results are needed for Yn
a.s.−→ c to imply E[Yn] → c. One such

result is the dominated convergence theorem (in appendix).
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In general, almost sure convergence is much stronger than convergence in
probability. The following theorem supports this

Theorem. If Xn
a.s.−→ X then Xn

P−→ X.

Proof. Omitted 2

The other direction doesn’t hold. It is possible to have Xn
P−→ c but it will

not converge almost everywhere.

The following example shows that you can have convergence in probability,
but not convergence almost surely.
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Let Ω = [0, 1) and let
ω ∼ U(0, 1)

X1 = 1

X2 = I{0 ≤ ω < 0.5}
X3 = I{0.5 ≤ ω < 1}
X4 = I{0 ≤ ω < 0.25}
X5 = I{0.25 ≤ ω < 0.5}
X6 = I{0.5 ≤ ω < 0.75}
X7 = I{0.75 ≤ ω < 1}
X8 = I{0 ≤ ω < 0.125}

• • •

Xn = I

{
m

2k
≤ ω <

m + 1
2k

}
if n = 2k + m
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• P [Xn = 0] = 1− 1
2k → 1, hence Xn

P−→ 0

• For any ω, Xn(ω) = 1 for infinitely many n (its 1 for X1, then for one
of the next 2, then for one of the next 4, and so on). So for no ω does
Xn(ω) converge to 0 (it always comes back to 1 every so often). Hence

Xn

a.s.

6−→ 0.

For many problems, both forms of convergence hold. In addition, for most
problems that you would be interested in, convergence in probability is
probably adequate.

One useful result involving almost sure convergence is
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Theorem. [Strong Law of Large Numbers] Let X1, X2, . . . be independent
identically distribution RVs with E[Xi] = µ and E[|Xi|] < ∞ and define

X̄n =
X1 + X2 + . . . + Xn

n

Then X̄n
a.s.−→ µ.

Proof. Omitted 2

Remarks:

1. An important part of this theorem is that finite expectation of any RV
implies that its sample mean converges almost surely.

2. This result implies that the condition Var(Xi) < ∞ is not needed for
the weak law of large numbers to hold.
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3. These laws of large numbers give us the third motivation of the definition
of expectation: µ = E[X] is the “fair bet” for playing a game with payoff
X. This version strengthens the interpretation of probabilities as long
run relative frequencies.
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Types of Convergence - Appendix

Let X1, X2, X3, . . . be a sequence of RVs defined on a sample space Ω,
and X be another RV defined on the same sample space Ω. What is the
meaning of “the sequence of random variables Xn converging to a random
variable X”?

We’ve seen one type of convergence (in probability). There are others that
are used.

First recall that a random variable is a function from Ω to R1, i.e.
Xn = Xn(ω), X = X(ω), ω ∈ Ω.

When we are talking about convergence of random variables, we are actually
talking about events on the sample space Ω.

1. Convergence everywhere

Xn
everywhere−→ X ⇐⇒ Xn(ω) → X(ω) for all ω ∈ Ω
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2. Convergence almost surely (sometimes called almost everywhere or with
probability 1)

Xn
a.s.−→ X ⇐⇒ P [{ω : Xn(ω) → X(ω)}] = 1

3. Convergence in probability

Xn
P−→ X ⇐⇒ For any ε > 0, P [{ω : |Xn(ω)−X(ω)| < ε}] → 1

4. Convergence in mean of order p (Lp convergence)

E[|Xn −X|p] → 0 for p > 0

5. Convergence in distribution

To come later
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Notice that the first one, convergence everywhere does not involve
probability, so it isn’t useful in the course.

Also while these are stated in terms of convergence to random variables,
this includes convergence to a constant c as discussed earlier. Just let X
be a random variable such that P [X = c] = 1, P [X 6= c] = 0.

Similarly to convergence to a constant, in general Yn
a.s.−→ Y does not imply

E[Yn] → E[Y ].

For the means to converge, we need the Yn’s to be suitably bounded. One
such way is with the following theorem.

Theorem. [Dominated Convergence] If Yn
a.s.−→ Y and |Yn(ω)| < X(ω)

for some RV X with E[X] < ∞, then

E[Y ] < ∞ and E[Yn] → E[Y ]

Proof. Omitted 2
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In general, almost everywhere convergence is much stronger than
convergence in probability. The following theorem supports this

Theorem. If Xn
a.s.−→ X then Xn

P−→ X.

Proof. Omitted 2

The other direction doesn’t hold. It is possible to have Xn
P−→ X but it

will not converge almost everywhere.
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