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Convergence in Distribution

Theorem. Let X ∼ Bin(n, p) and let λ = np, Then

lim
n→∞

P [X = x] = lim
n→∞

(
n

x

)
px(1− p)n−x =

e−λλx

x!

So when n gets large, we can approximate binomial probabilities with
Poisson probabilities.

Proof.

lim
n→∞

(
n

x

)
px(1− p)n−x = lim

n→∞

(
n

x

)(
λ

n

)x (
1− λ

n

)n−x

=
n!

x!(n− x)!
λx

(
1
nx

)(
1− λ

n

)−x (
1− λ

n

)n
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=
n!

x!(n− x)!
λx

(
1
nx

)(
1− λ

n

)−x (
1− λ

n

)n

=
λx

x!
lim

n→∞
n!

(n− x)!
1

(n− λ)x︸ ︷︷ ︸
→1

(
1− λ

n

)n

︸ ︷︷ ︸
→e−λ

=
e−λλx

x!

2

Note that approximation works better when n is large and p is small as
can been seen in the following plot. If p is relatively large, a different
approximation should be used. This is coming later.

(Note in the plot, bars correspond to the true binomial probabilities and the
red circles correspond to the Poisson approximation.)
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Example: Let Y1, Y2, . . . be iid Exp(1). Then

Xn = Y1 + Y2 + . . . + Yn ∼ Gamma(n, 1)

which has

E[Xn] = n; Var(Xn) = n; SD(Xn) =
√

n

Thus Zn = Xn−n√
n

has mean = 0 and variance = 1.

Lets compare its distribution to Z ∼ N(0, 1). i.e. Is

P [−1 ≤ Zn ≤ 2] ≈ P [−1 ≤ Z ≤ 2]?

Let

Zn =
Xn − n√

n
; Xn = n +

√
nZn

fZn(z) = fXn(n +
√

nz)×√n
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P [a ≤ Zn ≤ b] =
∫ b

a

fZn(z)dz

=
∫ b

a

√
nfXn(n +

√
nz)dz

=
∫ b

a

√
n
(n +

√
nz)n−1

(n− 1)!
e−(n+

√
nz)dz

To go further we need Stirling’s Formula: n! ≈ nne−n
√

2πn. So

fXn(n +
√

nz)
√

n = e−n−z
√

n(n + z
√

n)n−1

√
n

(n− 1)!

≈ e−n−z
√

n(n + z
√

n)n−1
√

n

(n− 1)n−1e−n+1
√

2πn

≈ 1√
2π

e−z
√

n

(
1 +

z√
n

)n

︸ ︷︷ ︸
gn(z)

Convergence in Distribution 5



log(gn(z)) = −z
√

n + n log
(

1 +
z√
n

)

= −z
√

n + n

[
z√
n
− 1

2
z2

n
+

1
3

z3

n3/2
− . . .

]
≈ −1

2
z2 + O

(
1√
n

)

so

fXn(n + z
√

n)
√

n ≈ 1√
2π

e−z2/2

Thus

P [a ≤ Zn ≤ b] →
∫ b

a

1√
2π

e−z2/2dz = P [a ≤ Z ≤ b]

So as n increases, the distribution of Zn gets closer and closer to a N(0, 1).
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Another way of thinking of this, is that the distribution of Xn = n + Zn
√

n
approaches that of a N(n, n).
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Definition. Let X1, X2, . . . be a sequence of RVs with cumulative
distribution functions F1, F2, . . . and let X be a RV with distribution
F . We say Xn Converges in Distribution to X if

lim
n→∞

Fn(x) = F (x)

at every point at which F is continuous. Xn
D−→ X

An equivalent statement to this is that for all a and b where F is continuous

P [a ≤ Xn ≤ b] → P [a ≤ X ≤ b]

Note that if Xn and X are discrete distributions, this condition reduces to
P [Xn = xi] → P [X = xi] for all support points xi.
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Note that an equivalent definition of convergence in distribution is that

Xn
D−→ X if E[g(Xn)] → E[g(X)] for all bounded, continuous functions

g(·).
This statement of convergence in distribution is needed to help prove the
following theorem

Theorem. [Continuity Theorem] Let Xn be a sequence of random
variables with cumulative distribution functions Fn(x) and corresponding
moment generating functions Mn(t). Let X be a random variable with
cumulative distribution function F (x) and moment generating function
M(t). If Mn(t) → M(t) for all t in an open interval containing zero, then

Fn(x) → F (x) at all continuity points of F . That is Xn
D−→ X.

Thus the previous two examples (Binomial/Poisson and Gamma/Normal)
could be proved this way.
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For the Gamma/Normal example

MZn(t) = MXn

(
t√
n

)
e−t

√
n =

(
1

1− t√
n

)n

e−t
√

n

Similarly to the earlier proof, its easier to work with log MZn(t)

log MZn(t) = −t
√

n− n log
(

1− t√
n

)

= −t
√

n− n

[
− t√

n
− 1

2
t2

n
− 1

3
t3

n3/2
− . . .

]

=
1
2
t2 + O

(
1√
n

)

Thus
MZn(t) → et2/2

which is the MGF for a standard normal.
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Central Limit Theorem

Theorem. [Central Limit Theorem (CLT)] Let X1, X2, X3, . . . be a
sequence of independent RVs having mean µ and variance σ2 and a
common distribution function F (x) and moment generating function M(t)
defined in a neighbourhood of zero. Let

Sn =
n∑

i=1

Xn

Then

lim
n→∞

P

[
Sn − nµ

σ
√

n
≤ x

]
= Φ(x)

That is
Sn − nµ

σ
√

n

D−→ N(0, 1)
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Proof. Without a loss of generality, we can assume that µ = 0. So let
Zn = Sn

σ
√

n
. Since Sn is the sum of n iid RVs,

MSn(t) = (M(t))n ; MZn(t) =
(

M

(
t

σ
√

n

))n

Taking a Taylor series expansion of M(t) around 0 gives

M(t) = M(0) + M ′(0)t +
1
2
M ′′(0)t2 + εt = 1 +

1
2
σ2t2 + O(t3)

since M(0) = 1,M ′(0) = µ = 0,M ′′(0) = σ2. So

M

(
t

σ
√

n

)
= 1 +

1
2
σ2

(
t

σ
√

n

)2

+ O

((
t

σ
√

n

)3
)

= 1 +
t2

2n
+ O

(
1

n3/2

)
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This gives

MZn(t) =
(

1 +
t2

2n
+ O

(
1

n3/2

))n

→ et2/2

2

Note that the requirement of a MGF is not needed for the theorem to hold.
In fact, all that is needed is that Var(Xi) = σ2 < ∞. A standard proof of
this more general theorem uses the characteristic function (which is defined
for any distribution)

φ(t) =
∫ ∞

−∞
eitxf(x)dx = M(it)

instead of the moment generating function M(t), where i =
√−1.

Thus the CLT holds for distributions such as the log normal, even though
it doesn’t have a MGF.
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Also, the CLT is often presented in the following equivalent form

Zn =
X̄n − µ

σ/
√

n
=
√

n
X̄n − µ

σ

D−→ N(0, 1)

To see this is the same, just multiply the numerator and denominator by n
in the first form to get the statement about Sn.

The common way that this is used is that

Sn
approx.∼ N

(
nµ, nσ2

)
or X̄n

approx.∼ N

(
µ,

σ2

n

)
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Example: Insurance claims

Suppose that an insurance company has 10,000 policy holders. The expected
yearly claim per policyholder is $240 with a standard deviation of $800.
What is the approximate probability that the total yearly claims S10,000 >
$2.6 Million

E[S10,000] = 10, 000× 240 = 2, 400, 000
SD(S10,000) =

√
10, 000× 800 = 80, 000

P [S10,000 > 2, 600, 000]

= P

[
S10,000 − 2, 400, 000

80, 000
>

2, 600, 000− 2, 400, 000
80, 000

]

≈ P [Z > 2.5] = 0.0062

Note that this probability statement does not use anything about the
distribution of the original policy claims except their mean and standard
deviation. Its probable that their distribution is highly skewed right (since
µx << σx), but the calculations ignore this fact.
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One consequence of the CLT is the normal approximation to the binomial.
If Xn ∼ Bin(n, p) and p̂n = Xn

n , then (since Xn can be thought of the sum
of n Bernoulli’s)

Xn − np√
np(1− p)

D−→ N(0, 1);
p̂n − p√

p(1− p)/n

D−→ N(0, 1)

Another way of think of this is that

Xn
approx.∼ N(np, np(1− p)); p̂n

approx.∼ N

(
p,

p(1− p)
n

)

This approximation works better when p is closer to 1
2 than when p is near

0 or 1.

A rule of thumb is that is ok to use the normal approximation when np ≥ 5
and n(1− p) ≥ 5 (expect at least 5 successes and 5 failures). (Other books
sometimes suggest other values, with the most popular alternative being
10.)
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Continuity correction to the binomial approximation

p =  0.3  n =  50
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Suppose that X ∼ Bin(50, 0.3)
and we are interested in

P [p̂ ≤ 0.24] = P [X ≤ 12]

Notice that the bar corresponding
to X = 12, the normal curve only
picks up about half the area, as
the bar actually goes from 11.5 to
12.5.

The normal approximation can be
improved if we ask for the area
under the normal curve up to
12.5.
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Let Y ∼ N(15, 10.5) (approximating normal). Then

P [X ≤ 12] = 0.2229 (True Probability)

P [Y ≤ 12] = 0.1773 (No correction)

P [Y ≤ 12.5] = 0.2202 (With correction)
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While this does give a better answer for many problems, normally I
recommend ignoring it. If the correction makes a difference, you probably
want to be doing an exact probability calculation instead.

When will the CLT work better?

• Big n

• Distribution of Xi close to normal. Approximation holds exactly if n = 1
if Xi ∼ N(µ, σ2).

• Xi roughly symmetric. As we observed with the binomial examples, the
closer p was to 0.5, thus closer to symmetry, the better the approximation
works. The more skewness there is in the distribution of the observations,
the bigger n needs to be.

In the following plots, the histogram represents 10,000 simulated X̄s, the
black curves are the true densities or CDFs, and the red curves are the
normal approximations.
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There are other forms of the CLT, which relax the assumptions about the
distribution. One example is,

Theorem. [Liapunov’s CLT] Let X1, X2, . . . be independent random
variables with E[Xi] = µi, Var(Xi) = σ2

i , and E[|Xi − µ|] = βi. Let

Bn =

(
n∑

i=1

βi

)1/3

cn =

(
n∑

i=1

σ2
i

)1/2

= SD

(
n∑

i=1

Xi

)
.

Then

Yn =
∑n

i=1(Xi − µi)
cn

D−→ Z ∼ N(0, 1)

if Bn
cn
→ 0

Proof. Omitted 2

The condition involving Bi and ci has to do with each term in the sum
having roughly the same weight. We don’t want the sum to be dominated
by a few terms.
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Example: Regression through the origin

Let Xi = weight of car i and Yi = fuel in gallons to go 100 miles.

Model: Yi = θXi + εi where εi are independent errors with

E[εi] = 0, Var(εi) = σ2, E[|εi|3] < ∞
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How to estimate θ from data?
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Minimize the least squares
criterion

SS(θ) =
n∑

i=1

(Yi − θXi)2

which is minimized by

θ̂ =
∑n

i=1 XiYi∑n
i=1 X2

i

What is the distribution of θ̂ − θ?

θ̂ =
∑n

i=1 Xi(θXi + εi)∑n
i=1 X2

i

= θ +
∑n

i=1 Xiεi∑n
i=1 X2

i
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Let Zi = Xiεi. Thus E[Zi] = 0, Var(Zi) = X2
i σ2. Thus

∑n
i=1(Xiεi − 0)√∑n

i=1 X2
i σ2

D−→ N(0, 1)

Note that ∑n
i=1 Xiεi√∑n
i=1 X2

i σ2
× σ√∑n

i=1 X2
i

= (θ̂ − θ)

implying

(θ̂ − θ)
√∑n

i=1 X2
i

D−→ N(0, σ2)

So

θ̂
approx.∼ N

(
θ,

σ2

∑n
i=1 X2

i

)
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If weight is measured in 100’s of
pounds, the estimate of θ is θ̂ =
0.114 (which implies that each
additional 100 pounds of weight
appears to add 0.114 gallons to
the fuel use on average).

The estimate of σ is s = 0.3811.
This gives a standard error of

s√∑93
i=1 X2

i

= 0.00126

which implies we are estimating θ
very precisely in this case.

θ̂
approx.∼ N(θ, 0.001262)

(Red line: fitted line. Green lines: 95% confidence intervals of the fitted line.)
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There are also versions of the CLT that allow the variables to have limited
levels of dependency.

They all have the basic form (under different technical conditions)

Sn − E[Sn]
SD(Sn)

D−→ N(0, 1) or
X̄n − E[X̄n]

SD(X̄n)
D−→ N(0, 1)

which imply

Sn
approx.∼ N(E[Sn], Var(Sn)) or X̄n

approx.∼ N(E[X̄n], Var(X̄n))
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These mathematical results suggest why the normal distribution is so
commonly seen with real data.

They say, that when an effect is the sum of a large number of small,
roughly equally weighted terms, the effect should be approximately normally
distributed.

For example, peoples heights are influenced by (a potentially) large number
of genes and by various environmental effects.

Histograms of adult men and women’s heights are both well described by
normal densities.
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Theorem. [Slutsky’s Theorems] Suppose Xn
D−→ X and Yn

P−→ c
(constant). Then

1. Xn + Yn
D−→ X + c

2. XnYn
D−→ cX

3. If c 6= 0, Xn
Yn

D−→ Xn
c

4. Let f(x, y) be a continuous function. Then f(Xn, Yn) D−→ f(X, c)

Example: Suppose X1, X2, . . . are iid with E[Xi] = µ, Var(Xi) = σ2. What
are the distributions of the t-statistics

Tn =
X̄n − µ

Sn/
√

n

as n →∞.
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As we have seen before

1. By the central limit theorem

X̄n − µ

σ/
√

n

D−→ N(0, 1)

2. S2
n

P−→ σ2, or Sn
σ

P−→ 1

T =
[
X̄n − µ

σ/
√

n

]/
Sn

σ

D−→ N(0, 1)
1

= N(0, 1)

This result proves that the tn distributions converge to the N(0, 1)
distribution.
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