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Population Parameters

Framework: Finite population with N items

• Population values: ν1, ν2, . . . , νN (may be repeated values)

• Population mean:

µ =
1
N

N∑

i=1

νi = ν̄

• Population total:

τ =
N∑

i=1

νi = Nµ

• Population variance:

σ2 =
1
N

N∑

i=1

(νi − µ)2
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The quantities µ, τ, σ2 are examples of population parameters, which are
numerical summaries of the set of population values. Thus, the population
standard deviation σ and

p =
1
N

N∑

i=1

I{νi < 0}

are also population parameters.

Population parameters of interest are often of the form

1
N

N∑

i=1

g(νi) = E[g(ν)]

This can be seen from the following scheme. Suppose we draw X1 randomly
from the population. Then X1 = νi with probability 1

N and

E[X1] = ν̄ = µ; Var(X1) = σ2

Population Parameters 2



The problem of interest is to learn about the population parameters of
interest. Sample surveys are used to obtain information about a large
population by examining only a small fraction of that population.

Examples of sample surveys

• Political polling

• Consumer preferences

• Product monitoring (quality control)

• Financial auditing
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Why sample instead of doing a census (examine all population units)?

• Cheaper

• Selecting sample units at random is a guard against investigator biases

• More accurate. Better care of data quality can be taken with smaller
samples

• Random sampling provides techniques for the calculation of an estimate
of the sampling error.

• When designing a sample, it is usually possible to determine the sample
size required to meet a desired error level.
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The techniques to be discussed are probability based sampling schemes. In
these schemes, each population member will have a certain probability of
being sampled pi. In fact, for these schemes the probability of any sample
of size n can be determined.

Poor sampling schemes can lead to events such as the following . . .
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This headline was partially based on polling data which suggested that
Dewey would beat Truman.

Roper Crossly Gallup Election

Truman (Democratic) 38% 45% 44% 50%

Dewey (Republican) 53% 50% 50% 45%

Others 9% 5% 6% 5%

Others included Strom Thurmond (State’ Rights) who won 4 states (39
electoral votes) and Henry Wallace (Progessive).

In these polls, there was a greater chance for a Republican to be sampled
than a Democrat, which skewed the polls towards Dewey. Also the polls
were done about a week prior to election day and there is fairly good
evidence that they was a drift towards Truman in the final week of the
campaign.

When designing a sampling scheme, we want it to be independent of the
values we are interested in.
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The schemes that will be discussed satisfy this.

Definition. A Simple Random Sample (SRS), {X1, X2, . . . , Xn} is
equally likely to be any of the

(
N
n

)
sample of size n from the N population

values. These samples can be generated by sampling without replacement
from the population.

We will estimate these population parameters with the following estimators

• Population mean with sample average:

X̄ =
1
n

n∑

i=1

Xi

• Population total with

T =
n∑

i=1

Xi = NX̄
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• Population variance with sample variance

S2 =
1

n− 1

n∑

i=1

(Xi − X̄)2

We want to get an idea of how these can vary over the
(
N
n

)
different samples

of size n
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Sampling Distributions

Example: Law school data

Generate 2 samples with n = 15 from the population of 82 schools.

Questions of interest:

• Mean LSAT (µ = 597.55)

• Proportion of LSAT < 550 (p = 0.0976)

• Mean GPA (µ = 3.135)

Note that within each example sample, the same schools will be used for all
three measures
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LSAT Scores − Sample 1
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LSAT Scores − Sample 2
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Sample 1 estimate Sample 2 estimate True value

X̄LSAT 593.93 607.27 597.55

p̂LSAT 0.133 0 0.0976

X̄GPA 3.137 3.167 3.135

So, not surprisingly, different samples give us different parameter estimates

We can ask, what the
(
N
n

)
different samples samples give for each parameter

estimate. Since each sample chosen is random, the estimate (say X̄, p̂, or
S) is a random variables.

The probability distribution induced on a statistic by the sampling
mechanism is known as its Sampling Distribution.

As we will see, different sampling mechanisms can lead to different sampling
distributions.
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Often determining the sampling distribution exactly is difficult as the number
of possible samples is too large. For the law school example, the number of
possible samples is

(
82
15

)
= 9.97× 1015 (about 10 quintillion)

So to determine properties of the sampling distribution we will have to use
approximation procedures and incomplete descriptions.

The approximations include simulation and asymptotic (convergence in
distribution) approaches.

The following plot illustrates both approaches.

The histograms are based on 10,000 randomly generated simple random
samples of size 15.

The curves are normal approximations based on the central limit theorem
(with an adjustment for the dependency).
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LSAT Sampling Distribution − n = 15

XLSAT

D
en

si
ty

570 590 610 630

0.
00

0.
01

0.
02

0.
03

0.
04

GPA Sampling Distribution − n = 15

XGPA

D
en

si
ty

2.95 3.05 3.15 3.25

0
2

4
6

8

Sampling Distributions 14



Sampling distribution of X̄

It is possible to make some general statements about the sampling
distribution of X̄. These will be justified later.

1. The histograms are centered near their population means

2. The spread in the histograms decreases as n increases.

3. The shape of the histograms is roughly symmetric, even though the
population values aren’t.
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Theorem. If X1, X2, . . . , Xn is a SRS, then

E[X̄] = µ

Var(X̄) =
σ2

n

(
1− n− 1

N − 1

)

Proof. Since for each i, E[Xi] = µ,

E[X̄] =
1
n

n∑

i=1

E[Xi] =
1
n
nµ = µ
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Var(X̄) =
1
n2




n∑

i=1

Var(Xi) +
∑

i 6=j

Cov(Xi, Xj)




=
1
n2

(nVar(Xi) + n(n− 1)Cov(X1, X2))

=
σ2

n
+

n− 1
n

Cov(X1, X2)

To get Cov(X1, X2), look at E[X1X2] = E[E[X1X2|X1]]

E[X1X2|X1 = νj] = νjE[X2|X1 = νj]

= νj

(
Nν̄ − νj

N − 1

)

=
N

N − 1
νjν̄ −

ν2
j

N − 1
Def
= θj
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Thus E[X1X2|X1] = θj with probability 1
N .

E[X1X2] =
1
N

N∑

i=1

θj =
1
N

N∑

i=1

N

N − 1
ν̄νj − 1

N

N∑

i=1

ν2
j

N − 1

=
N

N − 1
ν̄2 − 1

N − 1
ν2

= ν̄2 − 1
N − 1

(ν2 − ν̄2) = µ2 − 1
N − 1

σ2

Therefore Cov(X1, X2) = E[X1X2]− µ2 = − σ2

N−1. Plugging this in gives,

Var(X̄) =
σ2

n
+

n− 1
n

(
− σ2

N − 1

)

=
σ2

n

(
1− n− 1

N − 1

)

2

Sampling Distributions 18



Remark: If X1, X2, . . . , Xn are sampled with replacement, then they are

independent and E[X̄] = µ, Var(X̄) = σ2

n . When N is large compared to
n, SRS behaves likes independent sampling. The quantity

1− n− 1
N − 1

=
N − n

N − 1

is known as the finite population correction (FPC). Note that it always
≤ 1, implying that ignoring the dependency in the sampling leads us to
overestimating the uncertainty in X̄ as an estimate of µ.

It is approximately equal 1 minus the fraction of the population that is
sampled. Intuitively, its describing how much we gain by knowing we are
sampling from a finite population without replacement. When n ¿ N the
correction factor doesn’t make much difference and is often neglected.
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In the law school example, it can make as difference since

FPC(15) =
(

1− 14
81

)
= 0.82 FPC(30) =

(
1− 29

81

)
= 0.64

However for more typical examples, say sampling 1000 people living in
Massachusetts (population approximately 6.4 million), the correction makes
little difference

FPC ≈
(

1− 999
6.4× 106

)
= 0.9998
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Population total

If instead we are interested in the population total (e.g. we want to know
the total tax paid in Massachusetts instead of the average tax paid by
Massachusetts residents), we can estimate this by

T = NX̄

The first two moments of the sampling distribution are

E[T ] = Nµ = τ Var(T ) = N2σ
2

n

N − n

N − 1

This is a rare case where the precision of an estimate depends strongly on
the population size N .
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Population proportion

A third common problem of interest is estimating a population proportion,
such as the proportion of Massachusetts residents who pay less that $200
a year in state income tax, or the proportion of law schools with incoming
average LSAT scores less than 550 (8 of 82, p = 0.0976)

Let X be the number of “successes” out of n draws from the population.
Then X has a hypergeometric distribution with

E[X] = np Var(X) = np(1− p)
(

1− n− 1
N − 1

)

The sample proportion, p̂ = X
n has moments

E[p̂] = p Var(p̂) =
p(1− p)

n

(
1− n− 1

N − 1

)

Notice that the variance looks like that of the binomial distribution times
the FPC.
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The usual measure of the precision of an estimator is the standard deviation
of the sampling distribution, often referred to as the standard error. So for
the estimators seen so far, there standard errors are

σX̄ =
σ√
n

√
1− n− 1

N − 1

σT = N
σ√
n

√
1− n− 1

N − 1

σp̂ =

√
p(1− p)

n

√
1− n− 1

N − 1
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So for the law school example looking at the average LSAT scores, the
standard errors are

n = 15 n = 30

X̄ 38.49√
15

√
1− 14

81 = 9.04 7.96

T 8238.49√
15

√
1− 14

81 = 741.16 523.16

p̂
√

0.0976(1−0.0976)
15

√
1− 14

81 = 0.0697 0.0434

Why do we care about mean and variance of an estimator, particularly
with X̄? They allow us to find regions that contain an estimate with high
probability.

For example, Chebyshev gives us

P [−kσX̄ ≤ X̄ − µ ≤ kσX̄] ≥ 1− 1
k2
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In addition, when n is large, X̄ is approximately normal with the mean and
variance given earlier. That is

P

[
X̄ − µ

σX̄

≤ z

]
≈ Φ(z)

Thus we can use the normal distribution, which we have seen, often gives
better approximations in probabilities than Chebyshev’s inequality.

P [−kσX̄ ≤ X̄ − µ ≤ kσX̄] ≈ Φ(k)− Φ(−k) = 1− 2Φ(−k)

These results also hold for T and p̂. It is common to use the normal
approximation as long n isn’t to small. For many problems n > 30 is fine,
though the choice really is problem specific.
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LSAT Sampling Distribution − n = 15
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LSAT Sampling Distribution − n = 30
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Theorem. If X1, X2, . . . , Xn is a SRS, then

E[S2] = σ2

(
1 +

1
N − 1

)
= σ2 N

N − 1

Proof.

S2 =
1

n− 1

(
n∑

i=1

X2
i − nX̄2

)

E[S2] =
1

n− 1
(
nE[X2

1 ]− nE[(X̄)2]
)

=
1

n− 1

(
n(σ2 + µ2)− n

(
σ2

n

(
1− n− 1

N − 1

)
+ µ2

))

=
σ2

n− 1

(
n−

(
1− n− 1

N − 1

))

= σ2

(
1 +

1
N − 1

)
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2

So note that with an SRS, S2 has a small positive bias, due to the
dependency of the draws. (If the draws are with replacement, it is unbiasd)

It is still preferable to

σ̂2 =
1
n

n∑

i=1

(Xi − X̄)2 =
n− 1

n
S2

since

E[σ̂2] =
n− 1

n
E[S2] = σ2n− 1

n

N

N − 1

Note that since n < N, n−1
n

N
N−1 < 1, so σ̂2 has a negative bias.

Since 1
N−1 ¿ 1

n usually, the bias of S2 is much smaller than that of σ̂2.

If an unbiased estimate is needed, the following can be used

S2N − 1
N
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Note that if we want to make probabilistic statement about X̄, we need to
know its variance, which depends on σ2. By plugging the above unbiased
estimate of σ2, we get the following unbiased estimate of Var(X̄)

S2
X̄ =

S2

n

(
1− n

N

)

To get an unbiased estimate of the variance of p̂, the following is usually
used

S2
p̂ =

p̂(1− p̂)
n− 1

(
1− n

N

)
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Thus we can get the estimated standard errors

sX̄ =
S√
n

√
1− n

N

sT = N
S√
n

√
1− n

N

sp̂ =

√
p̂(1− p̂)
n− 1

√
1− n

N

Note that since that these depend on the sample data, they are also random
variables, and thus have there own sampling distribution, which we won’t
figure out.
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Sample 1 estimate Sample 2 estimate True value

X̄LSAT 593.93 607.27 597.55

SX̄LSAT
12.23 7.31 8.983

p̂LSAT 0.133 0 0.0976

Sp̂ 0.0821 0 0.0697

X̄GPA 3.137 3.167 3.135

SX̄GPA
0.0593 0.0306 0.0442

In all but one case (P [LSAT < 550]), the sample estimates are close to
their true parameter value (error < 1 SE). And even for the estimate of the
sample proportion in the 2nd sample, it is not particularly surprising, since
P [X = 0] = 0.19

For this one parameter, the standard error isn’t the greatest measure of
the precision of the estimate since for such a small sample size, the normal
distribution approximation for p̂ isn’t very good.
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Confidence Intervals

As discussed earlier

X̄ − µ

σX̄

approx.∼ N(0, 1) and X̄
approx.∼ N(µ, σ2

X̄)

so we can use the normal distribution to approximate probabilities about X̄.
For example, for the law school example when sampling 15 LSAT scores,

P [X̄ ≥ 615] = P

[
X̄ − µ

σX̄

≥ 615− µ

σX̄

]

= P [Z ≥ 1.94] ≈ 1− Φ(1.94) = 0.0262

So its unlikely to see X̄ this big or bigger when sampling 15 LSAT scores
from this observation.
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In addition

P [−kσX̄ ≤ X̄ − µ ≤ kσX̄] ≈ Φ(k)− Φ(−k) = 1− 2Φ(−k)

which says with probability approximately 1− 2Φ(−k), X̄ will be within k
standard errors of µ. For example, 80% of the time, X̄ will be within 1.282
standard errors, 90% of the time within 1.645 standard errors, and 95% of
the time within 1.96 standard errors.

Now if we “switch” the way of looking at things, if X̄ is within k standard
error of µ, then µ must be within k standard errors of X̄. This approach of
switching gives us an approach for describing plausible values for µ based
on a sample.
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α

Lets assume that Z ∼ N(0, 1).
Let z(α) be the value satisfying
P [Z ≥ z(α)] = α.

These values can be determined
by inverting the normal table in
the back of the text or, for
selected values of α, from the
t-table (Table 4) from the ∞ row
by noting that z(α) = t1−α. This
is where I got the number for the
previous page.

Since X̄ is approximately normal

P

[
−z(α/2) ≤ X̄ − µ

σX̄

≤ z(α/2)
]
≈ 1− α

by rearranging the terms, this gives
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P
[
X̄ − z(α/2)σX̄ ≤ µ ≤ X̄ + z(α/2)σX̄

] ≈ 1− α

i.e. What the probability that µ is within z(α) standard errors of X̄ (in the
interval X̄ ± z(α/2)σX̄).

So the probability that we select a sample that gives us a X̄ so that µ is in
that interval is approximately 1− α. Note that these intervals are random
as they depend on the random sample generated.

The interval X̄ ± z(α/2)σX̄ is known as a 100(1−α)% confidence interval
for µ. 1 − α is known as the confidence level and is usually chosen to be
large (≥ 0.9) usually with 95% being the most popular choice.

If we are working with 95% confidence intervals (CIs), we expect about
95% of them to contain the true mean and about 5% to miss the true
mean. However for any particular interval, we cannot know which situation
happens, unless its simulation like the following.
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95% Confidence Intervals − Exact Standard Errors

X

The vertical line is at the
true mean

The dots are at the
sample means for 50
different samples

The horizontal lines are
the intervals for each of
the 50 samples.

The density at the
top is the normal
approximation to the
sampling distribution of
X̄.

Confidence Intervals 36



560 580 600 620 640

95% Confidence Intervals − Estimated Standard Errors

X

Note: as mentioned before
σX̄ is unknown and must be
estimated. So replace σX̄ with
sX̄ in the CI formula giving

X̄ ± z(α/2)sX̄

Also the normal approximation
only holds when n is “large”.
A rule of thumb suggests 25 or
30 is often adequate.

Another modification that is
often made is to replace the
normal critical value z(α/2)
with the t critical value t1−α/2

with n− 1 degrees of freedom.
However for n ≥ 30, this
change makes little difference.
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We can also get CIs for population proportions.

The form of it matches the form of many CIs:

Estimate± Critical Value× Standard Error

Estimate±Margin of Error

Thus a 100(1− α)% CI for p is

p̂± z(α/2)sp̂

where

sp̂ =

√
p̂(1− p̂)
n− 1

√
1− n

N

Note that this interval will work better when n is large and p̂ isn’t close to 0
or 1. A modification of the rule of thumb for the normal approximation to
the binomial should work here to suggest when this should be a reasonable
interval. We want np̂ ≥ 5 and n(1− p̂) ≥ 5.
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Example: CIs for law school example (sample 1 only)

• 95% CI for µLSAT :

X̄ ± z(α/2)sX̄ = 593.93± 1.96× 12.23

= 595.93± 23.97 = (571.96, 619.90)

• 90% CI for µGPA:

3.137± 1.645× 0.0593 = 3.137± 0.098 = (3.039, 3.235)

• 95% CI for pLSAT :

0.133± 1.96× 0.0821 = 0.133± 0.161 = (−0.028, 0.294)

Here is an example where the normal approximation breaks down. An
alternative procedure is needed to determine the CI in this case.
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There are two main factors which determine the size of a confidence interval.

• Sample size n: As n increases, the standard error decreases

• Confidence level 1−α: As the confidence level increases z(α/2) increases.

Usually a narrow interval with high confidence is desired.

A problem of interest is to determine how big a sample is needed so that
the margin of error ≤ as desired level δ. When doing this the FPC is usually
ignored. What n such that

z(α/2)
σ√
n
≤ δ

To do this, you need some guess of σ. Given that this exists somewhere,
then
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n ≥ z2(α/2)σ2

δ2

In the situation of trying to estimate a population proportion, the problem
is to solve

z(α/2)

√
p(1− p)√

n
≤ δ

which depend on p. However this margin of error is maximized when p =
0.5, so one can choose n satisfying

z(α/2)
1√
4n

≤ δ

or

n ≥ z2(α/2)
4δ2

This choice of n will meet the criterion for any p.
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