Ratio Estimation

Statistics 110

Summer 2006

Ratio Estimation

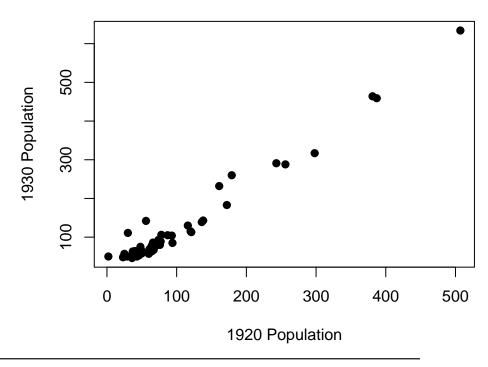
Another problem of interest involves two random variable X and Y, in particular the ratio of their two means (or equivalently, the ratio of their totals)

$$r = \frac{\mu_Y}{\mu_X} = \frac{\tau_Y}{\tau_X} = \frac{\sum_{i=1}^{N} y_i}{\sum_{i=1}^{N} x_i}$$

One example would be where y_i is population in year 1930 and x_i is the population in 1920 for city i (population in 1000's).

The plot shows the populations for 49 large cities for the two years in question.

r describes how much the population changes over the 10 year period.



A second example would have y_i be the annual soy bean production and x_i be the area in acres of farm i. Then r is the mean yield per acre in the population of farms.

One important thing to note is that

$$r \neq \frac{1}{N} \sum_{i=1}^{N} \frac{y_i}{x_i}$$

As before, we want to use a sample to estimate r. So suppose we sample n pairs (X_i, Y_i) and estimate r with

$$R = \frac{\bar{Y}}{\bar{X}}$$

Since R is a random quantity, is would be useful to determine E[R] and Var(R). Since the ratio is a nonlinear function of \bar{X} and \bar{Y} , getting exact values for these is difficult, but we can approximate them via the Taylor series methods discussed earlier.

Before doing that, we need two facts. The first is

Definition. The population covariance of $\{x_i\}$ and $\{y_i\}$ is

$$\sigma_{XY} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_X)(y_i - \mu_Y)$$

and the population correlation coefficient is

$$\rho = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

The second is

Theorem. If $(X_1, Y_1), \ldots, (X_n, Y_n)$, then

$$\operatorname{Cov}(\bar{X}, \bar{Y}) = \frac{\sigma_{XY}}{n} \left(1 - \frac{n-1}{N-1} \right)$$

Theorem. If $(X_1, Y_1), \ldots, (X_n, Y_n)$ is a SRS, then

$$E[R] \approx r + \frac{1}{n} \left(1 - \frac{n-1}{N-1} \right) \frac{1}{\mu_X^2} (r\sigma_X^2 - \rho\sigma_X\sigma_Y)$$

and

$$Var(R) \approx \frac{1}{\mu_X^2} (r^2 \sigma_{\bar{X}}^2 + \sigma_{\bar{Y}}^2 - 2r \sigma_{\bar{X}\bar{Y}})$$

$$= \frac{1}{n} \left(1 - \frac{n-1}{N-1} \right) \frac{1}{\mu_X^2} (r^2 \sigma_X^2 + \sigma_Y^2 - 2r \rho \sigma_X \sigma_Y)$$

The proof of this an application of the general results for ratio of two random variables (Example C section 4.6).

A couple of comments on these formulas.

- First the bias and variance decrease as n increases
- The bias and variance are large if μ_X are small. This isn't too surprising, since small changes in x can lead to big changes in $\frac{1}{x}$ if x is small.
- The more variable X and Y are, the bigger the variance of R.
- ullet The bias and variance decrease if ho is positive

As before, we need to estimate the variance of R since none of the population variances and covariances are usually known.

The usual estimate of the population covariance is

$$S_{XY} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})$$

leading to the estimate of the correlation of

$$\hat{\rho} = \frac{S_{XY}}{S_X S_Y}$$

Combining these, an estimate of Var(R) is

$$s_R^2 = \frac{1}{n} \left(1 - \frac{n-1}{N-1} \right) \frac{1}{\bar{X}^2} (R^2 S_X^2 + S_Y^2 - 2R S_{XY})$$

Finally, a $100(1-\alpha)\%$ CI for r is

$$R \pm z(\alpha/2)s_R$$

Example: Population Growth

$$\mu_X = 103.14$$
 $\mu_Y = 127.80$
 $r = 1.239$
 $\sigma_X = 103.33$
 $\sigma_Y = 121.86$
 $\rho = 0.982$

The sample estimates of these quantities (based on a sample of n = 25 cities) are

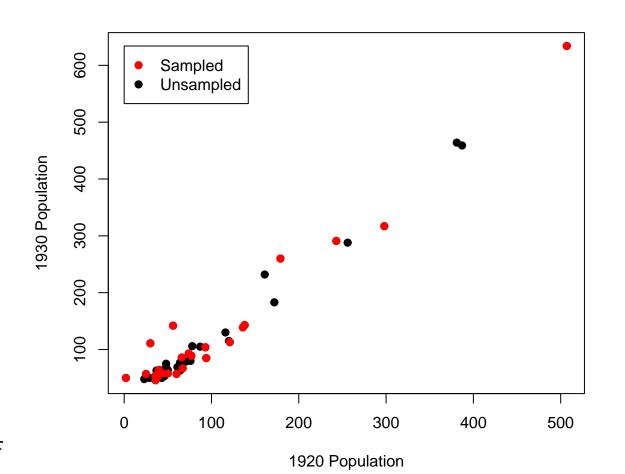
$$A = 102.0$$
 $S_{V} = 109.30$

$$\bar{X} = 102.0$$
 $\bar{Y} = 129.2$ $R = 1.267$

$$R = 1.267$$

$$S_X = 109.30$$
 $S_Y = 129.11$ $\hat{\rho} = 0.982$

$$\hat{\rho} = 0.982$$



$$s_R^2 = \frac{1}{25} \left(1 - \frac{24}{48} \right) \frac{1}{102.0^2} \times$$

$$(1.267^2 109.3^2 + 129.11^2 - 2 \times 1.267 \times 0.982 \times 109.3 \times 129.11)$$

$$= 0.001972$$

So a 95% CI for r is

$$1.267 + 1.96 \times \sqrt{0.001972} = 1.267 \pm 0.087 = (1.180, 1.354)$$

Note that the extremely high correlation between X and Y allows us to estimate the ratio very precisely.

We can use this property to estimate other quantities more precisely.

Conceptually is similar to using to doing prediction with E[Y|X=x] instead E[Y]. The dependency allows us to make more precise statements.

In particular we can use it to get better estimates of μ_Y , assuming that we know μ_X . While initially this idea might seem a bit surprising, in some situations it can work.

For example take the soy bean example where y_i is the soy bean yield and x_i is the area of farm i. While y_i might take some work to get, x_i is often easy to get through public records or may have already been collected.

The ratio estimate of μ_Y is

$$\bar{Y}_R = \frac{\mu_X}{\bar{X}}\bar{Y} = \mu_X R$$

Lets suppose that $\rho > 0$ and $\bar{X} < \mu_X$. In this case, it is likely that \bar{Y} will also be $< \mu_Y$, so this estimator will bump things up, hopefully closer to μ_Y .

Theorem. If $(X_1, Y_1), \dots, (X_n, Y_n)$ is a SRS, then

$$E[\bar{Y}_R] \approx \mu_Y + \frac{1}{n} \left(1 - \frac{n-1}{N-1} \right) \frac{1}{\mu_X} (r\sigma_X^2 - \rho\sigma_X\sigma_Y)$$

and

$$\operatorname{Var}(\bar{Y}_R) = \frac{1}{n} \left(1 - \frac{n-1}{N-1} \right) \left(r^2 \sigma_X^2 + \sigma_Y^2 - 2r \rho \sigma_X \sigma_Y \right)$$

The ratio estimator is more precise if $\mathrm{Var}(\bar{Y}) > \mathrm{Var}(\bar{Y}_R)$ or equivalently if

$$r^2 \sigma_X^2 - 2r\rho \sigma_X \sigma_Y < 0$$

which, if given r > 0

$$2\rho\sigma_Y > r\sigma_X$$

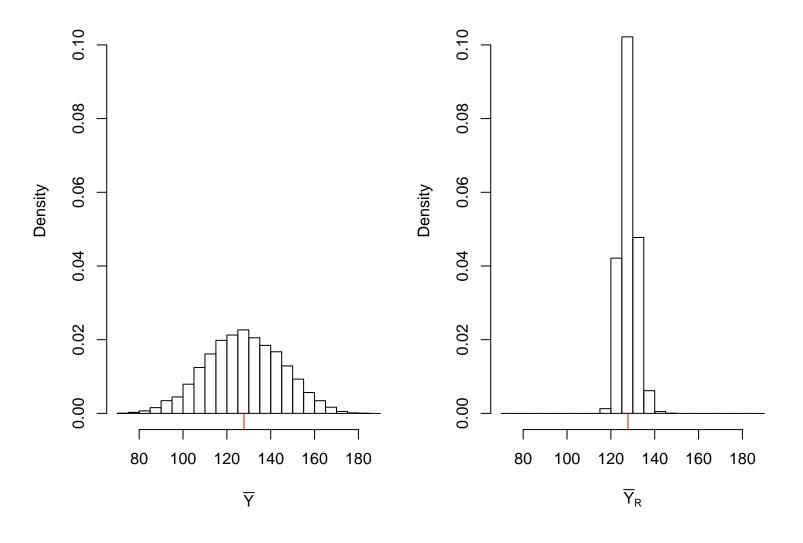
This is equivalent to

$$\rho > \frac{1}{2} \frac{C_X}{C_Y}$$

where $C_X = \frac{\sigma_X}{\mu_X}$ is the **coefficient of variation**

Note the the coefficient of variation is a relative standard deviation and is dimensionless (e.g. it is the same whether you measure in pounds or kilograms)

\overline{Y}_{R} for mean 1930 population



Based on this ratio estimator, there is a second CI for μ_Y of

$$\bar{Y}_R \pm z(\alpha/2)s_{\bar{Y}_R}$$

where

$$s_{\bar{Y}_R}^2 = \frac{1}{n} \left(1 - \frac{n-1}{N-1} \right) \left(R^2 S_X^2 + S_Y^2 - 2R S_{XY} \right)$$

For the population example,

$$\bar{X} = 102.00$$
 $\bar{Y} = 129.20$ $R = 1.267$ $S_X = 109.30$ $S_Y = 129.11$ $\hat{\rho} = 0.982$

These give (with $\mu_X = 103.14, \mu_Y = 127.80$)

$$\bar{Y}_R = \frac{103.14}{102.00} \times 129.20 = 130.64$$

$$s_{\bar{Y}} = \frac{129.11}{\sqrt{25}} \sqrt{1 - \frac{25}{49}} = 18.07$$

$$s_{\bar{Y}_R}^2 = \frac{1}{25} \left(1 - \frac{24}{48} \right) (1.267^2 109.30^2 + 129.11^2 - 2 \times 1.267 \times 13857.71)$$
$$= 20.52$$

95% CI based on \bar{Y} :

$$129.20 \pm 1.96 \times 18.07 = 129.20 \pm 35.42$$

95% CI based on \bar{Y}_R :

$$130.64 \pm 1.96\sqrt{20.52} = 130.64 \pm 8.88$$

So for this example, it ends up the ratio estimate is slightly worse (though usually we can never know this). However we can see the big advantage with this estimator, a much narrower confidence interval.