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Moment Inequalities

• Schwarz’s Inequality (sometimes called Cauchy-Schwarz)

(E[XY ])2 ≤ E[X2]E[Y 2]

Proof. Suppose that E[X2] > 0 and E[Y 2] > 0 Let

U =
X√

E[X2]
and V =

Y√
E[Y 2]

It can be shown that 2|UV | ≤ U2 + V 2. Thus

2|E[UV ]| ≤ 2E[|UV |] ≤ E[U2] + E[V 2] = 2

This gives
(E[UV ])2 ≤ (E[|UV |])2 ≤ 1
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implying
(E[XY ])2

E[X2]E[Y 2]
≤ (E[|XY |])2

E[X2]E[Y 2]
2

One consequence of this inequality is that (Cov(X,Y ))2 ≤
Var(X)Var(Y ) or |Cov(X, Y )| ≤ σXσY . A consequence of this is
that |Corr(X,Y )| ≤ 1, a result discussed earlier.
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• Jensen’s Inequality

If g(·) is a convex function on the interval (a, b) and X is a RV taking
values in (a, b), then E[g(X)] ≥ g(E[X]).
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Note that a function g(·) is convex on
the open interval I = (a, b) if

g(αu+(1−α)v) ≤ αg(u)+(1−α)g(v)

for all u, v ∈ I and 0 ≤ α ≤ 1.
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Proof. Convexity means that
a supporting line exists at
each t ∈ (a, b). i.e. the
graph lies completely above
each tangent line.

From the supporting line at
t = E[X] (with slope λ), we
have

g(x) ≥ g(E[X]) + λ(x− E[X])

E[g(X)] ≥ E[g(E[X]) + λ(X − E[X])

= g(E[X]) + λ(E[X]− E[X]) = g(E[X])

2
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A couple of examples where Jensen’s inequality can be used are the following

1. E[eX] ≥ exp(E[X]).

For example, assume X ∼ N(µ, σ2) and let Y = eX ∼ logN(µ, σ2).

A consequence is that E[Y ] = E[eX] ≥ eµ.

In fact E[Y ] = eµ+0.5σ2

Note going the other way, we get log(E[X]) ≥ E[log X] since − log x is
a convex function (log x is a concave function).

i.e. log eµ+0.5σ2 ≥ µ
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2. Arithmetic mean ≥ Geometric Mean ≥ Harmonic Mean

For any set of n positive numbers x1, x2, . . . , xn,

x1 + . . . + xn

n
≥ n
√

x1x2 . . . xn ≥ n
1
x1

+ . . . + 1
xn

To justify the first inequality let X be a random variable taking values
x1, x2, . . . , xn each with probability 1

n. Then Jensen’s says

log
(

x1 + . . . + xn

n

)
≥ log x1 + . . . + log xn

n
= log(x1 . . . xn)1/n

Then exponentiate both sides to get the first inequality.

The other inequalities can be derived similarly.
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• Lyapunov’s Inequality

If 0 < s < t
(E[|X|s])1/s ≤ (E[|X|t])1/t

A consequence of this is the relationship (for some integer p)

E[|X|] ≤ (E[|X|2])1/2 ≤ (E[|X|3])1/3 ≤ . . . ≤ (E[|X|p])1/p

which implies

|E[X]|q ≤ (E[|X|])q ≤ E[|X|q] if 1 ≤ q ≤ p

Proof. Let r = t
s > 1. Let Y = |X|s and apply Jensen’s inequality to

g(y) = |y|r, giving (E[|Y |])r ≤ E[|Y |r]. This implies that

(E[|X|s])t/s ≤ E[|X|t]

Taking the tth root of each side gives the result. 2
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Probability Inequalities

• Markov Inequality

Let X be a non-negative RV (i.e. P [X ≥ 0] = 1). Then for any a > 0,

P [X ≥ a] ≤ E[X]
a
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Proof.

X ≥ XI{X ≥ a} ≥ aI{X ≥ a}

Therefore

E[X] ≥ E[XI{X ≥ a}] = aP [X ≥ a]

2
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Note that there is an alternative version of this inequality that says if
[Xr] < ∞,

P [X ≥ a] ≤ E[Xr]
ar

• Chebyshev’s Inequality.

If E[X] = µ and Var(X) = σ2 < ∞, then

P [|X − µ| ≥ k] ≤ σ2

k2

Note that this equality is sometimes written as the equivalent

P [|X − µ| ≥ kσ] ≤ 1
k2
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Proof.

P [|X−µ| ≥ a] = P [(X−µ)2 ≥ a2] ≤ E[(X − µ)2]
a2

by Markov’s Inequality

Take a = k to get the first form of the result and a = kσ to get the
second form of the result. 2

Example: Suppose it is known that the number of widgets produced for
Guinness breweries in a factory during an hour is a RV with mean 500.

1. What can be said about the probability that an hour’s production will
exceed 1000?
Answer: By Markov’s inequality

P [X ≥ 1000] ≤ E[X]
1000

=
500
1000

= 0.5
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2. If the variance of a hour’s production is known to be 100, then what
can be said about the probability that a hour’s production will be
between 450 and 550?
Answer: By Chebyshev’s inequality

P [|X − 500| ≥ 50] ≤ Var(X)
502

=
100
502

=
1
25

= 0.04

This implies that

P [|X − 500| < 50] ≥ 1− 1
25

=
24
25

= 0.96

3. What can be said about the probability that the production will be
between 450 and 550 if X is normally distributed (N(500, 100))?

P [450 ≤ X ≤ 550] = P

[
450− 500

10
≤ Z ≤ 550− 500

10

]

= P [−5 ≤ Z ≤ 5] = Φ(5)− Φ(−5) = 0.9999994
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Note that these bounds are not particularly tight in most cases.

In fact they are what happens in a “worst case scenario”.

The following inequality also fits into this setting, where the bounds are
often loose.

• One-sided Chebyshev’s Inequality

If E[X] = µ and Var(X) = σ2 < ∞, then for any a > 0,

P [X ≥ µ + a] ≤ σ2

σ2 + a2

P [X ≤ µ− a] ≤ σ2

σ2 + a2
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Proof. Without loss of generality, assume that µ = 0. Then for any b,

P [X ≥ a] = P [X + b ≥ a + b]

= P [(X + b)2 ≥ (a + b)2]

≤ E[(X + b)2]
(a + b)2

=
E[X2] + b2

(a + b)2

=
α + t2

(1 + t)2
Def= g(t)

where

α =
E[X2]

a2
=

σ2

a2
; t =

b

a

To minimize g(t) (i.e. find the best b), set t = α, yielding

min g(t) =
α + α2

(1 + α)2
=

σ2

a2

1 + σ2

a2

=
σ2

σ2 + a2
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The other inequality is proved similarly.

2

Example: Back to the widget example. What can be said about the
probability that last least 550 widgets are made, assuming the mean is
500 and the variance is 100?

Answer:

P [X ≥ 550] = P [X ≥ 500 + 50] ≤ σ2

σ2 + 502
=

100
100 + 2500

= 0.0384

If we only use the different forms of the Markov inquality we get

P [X ≥ 550] ≤ E[X]
550

=
500
550

= 0.909

and

P [X ≥ 550] ≤ E[X2]
5502

=
σ2 + µ2

5502
= 0.827
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Note that if the production was normally distributed, P [X ≥ 550] =
0.000000287

These probability bounds may not be useful as they may give values greater
than 1. For example, if µ = 500, the Markov bound for

P [X ≥ 400] ≤ 500
400

= 1.25

This is a reason why different bounds have been developed. Generally, the
stronger the assumptions you make, the tighter the bounds you can get.
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