
Statistics 135 – Assignment 3
Due: Wednesday, November 9, 2005

For this assignment, please submit your answers typeset in some package, preferably in LATEX.

1. This question will investigate two possible ways of simulating random vectors from a mul-
tivariate normal distribution. The multivariate normal distribution is defined by two para-
meters, µ, a vector of length p, and Σ, the p × p, variance-covariance matrix. The density
of this distribution is

f(x|µ, σ) = (2π)−p/2|Σ|−p/2 exp(−0.5(x− µ)tΣ−1(x− µ))

While one of the most important distributions in statistics, there is no random number
generator built into the base of S-Plus or R for this distribution (there is one if you attach
the package MASS). What is desired is a function that will generate realizations from this
distribution where the call to the function mrnorm(n, mu, sigma) will return a n×p matrix,
where each row is a realization from the p dimensional multivariate normal.

(a) Matrix approach

Suppose that z = [z1z2 . . . zp]
T is a vector of p independent standard normal random

variables. Then µ + RTz is a realization from N(µ, Σ) where R is a matrix satisfying
RT R = Σ. The are number of ways of producing R with the most common based
on the Choleski decomposition or the eigenvalue/eigenvector decomposition. R for the
Choleski decomposition can gotten with R = chol(Sigma). Note that the form of the
matrix R doesn’t matter for the distributional result to hold.

Write the function for generating from the multivariate normal based on this Choleski
decomposition idea.

(b) Gibbs sampler

The Gibbs sampler is an approach that allows one to sample from complicated distri-
butions. The Gibbs sampler, and Markov Chain Monte Carlo (MCMC) methods in
general have opened up many areas of statistics, for example Bayesian statistics, and
have made them tractible.

Suppose you wanted to generate samples from the joint density f(x, y, z), but f is
complicated. A scheme that will generate (dependent) samples (asymptotically) is

initialize x, y, and z as x(0), y(0), and z(0)

for i = 1 to n {

draw x(i) from f(x|y(i-1), z(i-1))

draw y(i) from f(y|x(i), z(i-1))

draw z(i) from f(z|x(i), y(i))

}

The realizations (x(i), y(i), z(i)) form a Markov Chain with a stationary distribu-
tion having density f(x, y, z). Note that the realizations from the chain are not initially

1



from the desired distribution, as the result is asymptotic. Due to this fact, the initial
part of the chain is usually thrown away (known as burn-in). Also the realizations are
dependent, as the the realization at step i depends on the previous realizations. The
Matrix approach mentioned above does not have this problem.

Write a function for implementing the Gibbs sampler to draw from a bivariate normal
(assume p is 2). As part of the function, allow for a burn-in figure to be given, and for the
user to be able to specify the starting state of the chain. However for the starting state,
have the mean of the distribution be used as the default. The conditional distributions
you need to implement this sampler are
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y are the variances of the two components and σxy is the covariance.

(c) Generate 1000 realizations with both functions, with mu = c(10,5) and Sigma =

matrix(c(10,5,5,5),ncol=2) (this corresponds to the correlation ρ being 0.707. For
the Gibbs sampler sample, use a burnin of 100 iterations.

(d) Calculate the sample mean vector and sample variance-covariance matrix for both sam-
ples to see if they are close to the desired values. When calculating the mean vectors,
do it in a single operation without looping.

(e) Calulate the lag one autocorrations for both variables for both samples. You can do this
along the lines of cor(mvn[-1,1], mvn[-1000,1]), where mvn is a matrix containing
the draws from one of the functions. Also for both samples, plot xi against xi−1 and yi

against yi−1.

(f) Generate histograms for both variables and both samplers, superimposing the normal
density curves with the matching mean and variance and a kernel density estimate. Is
there any evidence or non-normality in any of the plots.

2. Binomial Regression - Bottle Return

A carefully controlled experiment was conducted to study the effect of the size of the deposit
level on the likelihood that a returnable one-litre soft-drink bottle will be returned. The
following data show the number of bottles returned (yi) out of 500 sold (ni) at each of 6
deposit levels (xi, in cents)

Observation i: 1 2 3 4 5 6
Deposit level xi: 2 5 10 20 25 30
Number sold ni: 500 500 500 500 500 500

Number returned yi: 72 103 170 296 406 449

(a) Fit a logistic regression model to the above data. What is the fitted response function.
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(b) Obtain an estimate of eβ1 and calculate a 95% confidence interval for the quantity.

(c) Fit a probit regression model to the same data.

(d) What is the estimated probability that a bottle will be returned when the deposit is 15
cents under both models. Similarly for 50 cents.

(e) Plot the estimated return probabilities pi = yi/ni against xi. Superimpose on this
plot curves of the estimated probabilities of return for the two models. Based on the
information seen so far, is there any reason to prefer one model fit over the other?

(f) For the logistic regression model, estimate the deposit level x where 75% of the bottles
are expected to be returned.
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