
Trellis Graphics Continued

Statistics 135

Autumn 2005

Copyright c©2005 by Mark E. Irwin



groups Option

sps <- trellis.par.get("superpose.symbol")
xyplot(Time ~ Viscosity, data=stormer, groups=Wt,
panel = panel.superpose, type="l",
key = list(columns=3, lines=Rows(sps,1:3),

text=list(paste(c("Weight: ", "",""), unique(stormer$Wt), "grams")))
)

Viscosity

T
im

e

50 100 150 200 250 300

50

100

150

200

250

Weight:  20 grams  50 grams  100 grams

groups Option 1



As mentioned last time, the option groups allows for an additional way of
adding a conditioning variable to a trellis plot.

Instead of adding addition panels to the figure, for each panel, based on the
conditioning variables v1 * v2 * . . . * vn, the plotting is done for each
level of the group variable.

For example, another way of looking at the quine dataset is via a stripplot,
where instead of treating Lrn as a conditioning variable, lets use it as a
groups variable instead.

groups Option 2



Days of Absence

0 20 40 60 80

Primary

First form

Second form

Third form

Eth:Aboriginal
Sex:Female

Eth:Non−Aboriginal
Sex:Female

Primary

First form

Second form

Third form

Eth:Aboriginal
Sex:Male

0 20 40 60 80

Eth:Non−Aboriginal
Sex:Male

Average learner Slow learner

groups Option 3



trellis.device("postscript", file="../quinestrip.eps", width=8, height=6,
horiz=F, col=T, theme="col.whitebg")

sps <- trellis.par.get("superpose.symbol")
sps$pch <- 16:22
trellis.par.set("superpose.symbol",sps)

stripplot(Age ~ Days | Eth*Sex, data=Quine,
groups=Lrn, jitter=T, cex=1,
panel = function(x,y, subscripts, jitter.data=F, ...) {
y <- as.numeric(y) # only needed in R
if(jitter.data) y <- jitter(y)
panel.superpose(x,y,subscripts,...)

},
xlab = "Days of Absence",
between = list(y=1), par.strip.text = list(cex=1.2),
key = list(columns=2, text=list(levels(Quine$Lrn)),
points=Rows(trellis.par.get("superpose.symbol"), 1:2), cex=1),

strip = function(...)
strip.default(..., strip.names=c(T,T),style=1)

)
dev.off()

groups Option 4



In this plot, the points are jittered slightly, which moves the plotting location
by a small amount, so overlapping points can be seen.

In the last class, the example showing the first use of groups didn’t come
out as I expected. The problem was that I reset the plotting symbols before
opening the trellis.device i.e.,

sps <- trellis.par.get("superpose.symbol")
sps$pch <- 1:7
trellis.par.set("superpose.symbol",sps)
trellis.device("postscript", file="../stormer.eps",
width=9, height=5, horiz=F, col=T)

It should have been the other way, i.e.,

trellis.device("postscript", file="../stormer.eps",
width=9, height=5, horiz=F, col=T)

sps <- trellis.par.get("superpose.symbol")
sps$pch <- 1:7
trellis.par.set("superpose.symbol",sps)

groups Option 5



The desired plot looks like this

Viscosity

T
im

e

50 100 150 200 250 300

50

100

150

200

250

Weight:  20 grams  50 grams  100 grams

groups Option 6



Conditioning on numeric variables

Lets take a look at the dataset from the lattice package, environmental,
which has 111 measurements on 4 variables, ozone, temperature, wind
speed, and solar radiation.

xyplot(ozone ~ temperature | wind, data=environmental,
ylab="Ozone",xlab="Temperature", layout=c(7,4))

> length(unique(environmental$wind))
[1] 28

In this data set, there are 28 different wind speeds among the 111
observations.

Conditioning on numeric variables 7



Temperature

O
zo

ne

60 70 80 90

0

50

100

150

wind wind

60 70 80 90

wind wind

60 70 80 90

wind wind

60 70 80 90

wind

wind wind wind wind wind wind

0

50

100

150

wind
0

50

100

150

wind wind wind wind wind wind wind

wind

60 70 80 90

wind wind

60 70 80 90

wind wind

60 70 80 90

wind

0

50

100

150

wind

Conditioning on numeric variables 8



For most panels, there are very few observations that can be plotted. What
would be more useful is to combine observations with similar wind speeds,
so there are fewer panels, but with more observations per panel. This can
be done by creating a shingle.

There are two approaches for creating a shingle. The simplest is
equal.count(x, number, overlap), which takes the data in vector x,
and creates number intervals, such that each interval has roughly the same
number of observations. The option overlap allows for overlap of intervals.

For example, to create a shingle with 6 intervals with an overlap of 20%,
we can use

Conditioning on numeric variables 9



> Wind <- equal.count(environmental$wind, number=6, overlap=0.2)
> Wind

Data:
[1] 7.4 8.0 12.6 11.5 8.6 13.8 20.1 9.7 9.2 10.9 13.2

. . .
[106] 10.3 16.6 6.9 14.3 8.0 11.5

Intervals:
min max count

1 2.05 7.15 24
2 6.65 8.25 22
3 7.75 9.95 25
4 9.45 11.75 35
5 10.65 14.05 27
6 12.35 20.95 23

Overlap between adjacent intervals:
[1] 6 7 9 16 7

Conditioning on numeric variables 10



It is also possible to create a shingle with user specified interval with the
function shingle(x, intervals) where intervals is a k by 2 matrix
with the endpoints of the intervals.

For example

> wind.int <- matrix(c(2,6, 5,10, 8,15, 15,21), ncol=2, byrow=T)
> Wind2 <- shingle(environmental$wind, intervals=wind.int)
> Wind2 # Data part of output deleted

Intervals:
min max count

1 2 6 12
2 5 10 51
3 8 15 70
4 15 21 8

Overlap between adjacent intervals:
[1] 5 25 0

Conditioning on numeric variables 11



So instead of conditioning on a real-valued variable, we can condition on
the shingle instead

xyplot(ozone ~ temperature | Wind, data=environmental,
ylab="Ozone",xlab="Temperature")

Temperature

O
zo

ne

60 70 80 90

0

50

100

150

Wind Wind

60 70 80 90

Wind

Wind

60 70 80 90

Wind

0

50

100

150

Wind

Conditioning on numeric variables 12



Controlling Presentation of Trellis Graphs

The trellis plot functions actually create complicated objects, a feature that
we haven’t used so far. One important fact is that they can be saved as
any S object can. For example, graphical summaries of the two shingles
discussed earlier can be saved by

wind.plt <- plot(Wind, aspect=0.4)
wind2.plt <- plot(Wind2, aspect=0.4)

Instead of being displayed in the current trellis device, they are saved as
objects.

This allows for some nice features.

First it allows a graph to be created once, but written to a number of trellis
devices. For example

trellis.device(windows, theme=col.whitebg)
wind.plt

Controlling Presentation of Trellis Graphs 13



trellis.device("postscript", file="../windshingle.eps",
width=8, height=4, horiz=F, col=T)

wind.plt # equivalently print(wind.plt)
dev.off()

first displays the figure on the screen and then writes it to the the following
postscript file

Range

P
an

el

5 10 15 20

1

2

3

4

5

6

Controlling Presentation of Trellis Graphs 14



Second it allows for trellis graphs to be updated with update function. (I
told a fib earlier saying trellis figures can’t be updated.) For example

wind.plt.up <- update(wind.plt,
main="equal.count() created shingle for wind")

wind2.plt.up <- update(wind2.plt,
main="shingle() created shingle for wind")

which adds titles to each shingle plot. This is mainly useful for changing,
titles or labels, font or symbol sizes, etc.

The third, and maybe most useful, is that it allows for multiple plots to be
combined into a single figure. This can be done with the print function
(actually the print.trellis method). One form of the function is

print(graph, split=c(col, row, ncol, nrow), more)

where graph is a stored trellis plot, split indicates where to place the
plot, and more is a logical indicating whether more plots are to be added.

Note Krause and Olsen get the split description wrong, at least for R.

Controlling Presentation of Trellis Graphs 15



For example, the two shingle plots can be combined by

trellis.device("postscript", file="../windshingle2.eps",
width=8, height=6, horiz=F, col=T)

print(wind.plt.up, split=c(1,1,2,1), more=T)
print(wind2.plt.up, split=c(2,1,2,1), more=F)
dev.off()

yielding

equal.count() created shingle for wind

Range

P
an

el

5 10 15 20

1
2
3
4
5
6

shingle() created shingle for wind

Range

P
an

el

5 10 15 20

1

2

3

4

Controlling Presentation of Trellis Graphs 16



There is a second approach which allows for different size plots in a figure
or for plots not to have to occur in a standard rectangular grid. This can be
done by using the position option instead of split in the print function.
This form of the function is

print(graph, position=c(xll, yll, xur, yur), more)

where (xll, yll) are the coordinates of the lower left corner of the plot
and (xur, yur) are the coordinates of the upper right corner of the plot.

For example

environ.plt <- xyplot(ozone ~ temperature | Wind,
data=environmental, ylab="Ozone",xlab="Temperature")

trellis.device("postscript", file="../environ3.eps",
width=8, height=6, horiz=F, col=T)

print(environ.plt, position=c(0, 0.4, 1, 1), more=T)
print(wind.plt.up, position=c(0, 0, 1, 0.4), more=F)
dev.off()

gives

Controlling Presentation of Trellis Graphs 17



Temperature

O
zo

ne

60 70 80 90

0

50

100

150

Wind Wind

60 70 80 90

Wind

Wind

60 70 80 90

Wind

0

50

100

150

Wind

equal.count() created shingle for wind

Range

P
an

el

5 10 15 20

1
2
3
4
5
6

Controlling Presentation of Trellis Graphs 18



One default that I don’t like is that for many trellis devices (including
windows and win.metafile) is for a gray background. To get a white
background, one option is to set theme = col.whitebg when opening the
trellis device. Note that this option will change some of the colours used in
the plot. They are chosen to look good on a white background. These can
be reset by playing with trellis.par.set() options.

Setting the theme can be done with any trellis device, including postscript
which doesn’t need it (the earlier stripplot example used it) . To change
the background for on screen display, you must explicitly open a plot window
with trellis.device(theme=col.whitebg).

Lets compare

trellis.device(width=9, height=6)
print(environ.plt)

with

trellis.device(theme=col.whitebg, width=9, height=6)
print(environ.plt)

Controlling Presentation of Trellis Graphs 19


