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General Linear Statistical Models

This framework includes

• Linear Regression

• Analysis of Variance (ANOVA)

• Analysis of Covariance (ANCOVA)

These models can all be analyzed with the function lm.

Note that much of what I plan to discuss will also extend to Generalized
Linear Models (glm), Nonlinear Least Squares (nls), Generalized Additive
Models (gam), and Regression Trees - Recursive Partitioning (rpart).
Though not surprisingly, extensions will be required for some of these.
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Linear Regression (Quantitative Predictors)

1. Model infant mortality (Infant.Mortality) in Switzerland by
Education, Agriculture, and Fertility in the dataset swiss.
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2. Model EPA highway fuel use (HighFuel) by Weight, engine size
(EngSize), Length, and Width in the cars93 dataset.

Scatter Plot Matrix
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Want to fit models of the form

yi = β0 + β1x1i + . . . + βpxpi + εi; εi
iid∼ N(0, σ2)

This model also includes polynomial regression, as for example, could have
xki = x2

ji.

Note that linear regression refers to being linear in the parameters β, not the
predictors. For example, polynomial or log transformations of the predictors
is fine.
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ANOVA (Qualitative Predictors)

1. Model rear width (RW) of Leptograpsus variegates by sex and species
in the crabs dataset.
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2. Model EPA highway fuel use (HighFuel) by car type (Type), number
of cylinders (Cylinders), and where made (Domestic) in the cars93
dataset.
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Cylinders
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Want to fit models of the form

yijkl = µ + (αβγ)jkl + εijkl; εijkl
iid∼ N(0, σ2)

Have a potentially different mean for each combination of the factor levels.
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ANCOVA (Combination of quantitative variables and qualitative
factors)

Model EPA highway fuel use (HighFuel) by Weight and where made
(Domestic) in the cars93 dataset.
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Want to fit models of the form

yji = β0j + β1jx1ji + . . . + βpjxpji + εji; εji
iid∼ N(0, σ2)

Have a different regression line (surface) for each combination of the
qualitative factors.

In fact, all three situations are special cases of a common model. They can
all be written in the form

yi = β0 + β1x1i + . . . + βkxki + εi; εi
iid∼ N(0, σ2)
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Consider 1-way ANOVA, where there is a single qualitative variable as a
predictor. An example of this would be HighFuel modeled by Type
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This data could be described by the model

yji = µ + αj + εji; εji
iid∼ N(0, σ2)

It can be converted to the other setting with

x1i =

{
1 car i is Compact

0 otherwise

x2i =

{
1 car i is Large

0 otherwise

. . .

x5i =

{
1 car i is Sporty

0 otherwise

General Linear Statistical Models 14



Note that we need one less x variable than the number of levels of the
categorical factor.

This is only one possible way of defining x variables for the regression
setting. The are other equally valid approaches. What is required that the
different observed combinations of the xs describe the different levels of the
categorical factor. How these variables are defined induces the relationship
between the βs and µ and the αs.

In S, there are easy approaches of creating the x automatically from the
factors (to come).
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Defining a Model

The basic approach of defining a model is with the form

y ~ x1 + x2 + . . . + xk

where xj could be a quantitative variable, a qualitative factor, or a
combination of variables.

For example, in the Infant Mortality example,

Infant.Mortality ~ Education + Agriculture + Fertility

describes the model

yi = β0 + β1x1i + +β2x2i + β3x3i + εi; εi
iid∼ N(0, σ2)
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To fit this model we can use the command

swiss.lm <- lm(Infant.Mortality ~ Education + Agriculture
+ Fertility, data=swiss)

A description of the model fits can be given by the summary function.

Defining a Model 17



> summary(swiss.lm)

Call:
lm(formula = Infant.Mortality ~ Education + Agriculture

+ Fertility, data = swiss)

Residuals:
Min 1Q Median 3Q Max

-8.1086 -1.3820 0.1706 1.7167 5.8039

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.14163 3.85882 2.628 0.01185 *
Education 0.06593 0.06602 0.999 0.32351
Agriculture -0.01755 0.02234 -0.785 0.43662
Fertility 0.14208 0.04176 3.403 0.00145 **
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Residual standard error: 2.625 on 43 degrees of freedom
Multiple R-Squared: 0.2405, Adjusted R-squared: 0.1875
F-statistic: 4.54 on 3 and 43 DF, p-value: 0.007508

Note that this only gives part of the standard regression output. To get the
ANOVA table, use the ANOVA command.

> anova(swiss.lm)
Analysis of Variance Table

Response: Infant.Mortality
Df Sum Sq Mean Sq F value Pr(>F)

Education 1 3.850 3.850 0.5585 0.458920
Agriculture 1 10.215 10.215 1.4820 0.230103
Fertility 1 79.804 79.804 11.5780 0.001454 **
Residuals 43 296.386 6.893
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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