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What are Factors?

> type.lm <- lm(HighFuel ~ Type, data=cars93)
> summary(type.lm)

Residuals:
Min 1Q Median 3Q Max

-0.87891 -0.19098 0.04712 0.22671 0.77217

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.37677 0.08886 38.002 < 2e-16 ***
TypeLarge 0.37248 0.13921 2.676 0.00891 **
TypeMidsize 0.39651 0.11678 3.395 0.00103 **
TypeSmall -0.49786 0.11795 -4.221 5.95e-05 ***
TypeSporty 0.14754 0.13007 1.134 0.25980
TypeVan 1.20983 0.14809 8.169 2.24e-12 ***
---
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Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.3554 on 87 degrees of freedom
Multiple R-Squared: 0.658, Adjusted R-squared: 0.6383
F-statistic: 33.48 on 5 and 87 DF, p-value: < 2.2e-16

> anova(type.lm)
Analysis of Variance Table

Response: HighFuel
Df Sum Sq Mean Sq F value Pr(>F)

Type 5 21.1446 4.2289 33.476 < 2.2e-16 ***
Residuals 87 10.9906 0.1263
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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So R recognized that Type was a factor and created the necessary predictor
variables. In this case, it included the indicators for Large, Midsize,
Small, Sporty, and Van. It dropped the indicator variable for Compact.

What is a factor?

It is the internal representation of a categorical variable. Character variables,
such as Type are automatically treated this way. However, numeric variables
could either be quantitative or factor levels (or quantitative but you want
to treat them factor levels). An example is Cylinder which is a factor (in
my representation of the data frame). I’ve created a section version of the
variable cylinder, which is numeric.

How S treats a variable depends of the type.
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> cylinder.lm <- lm(HighFuel ~ cylinder, data=cars93)
> Cylinder.lm <- lm(HighFuel ~ Cylinder, data=cars93)
> summary(cylinder.lm)

Call:
lm(formula = HighFuel ~ cylinder, data = cars93)

Residuals:
Min 1Q Median 3Q Max

-1.074287 -0.272838 0.001887 0.200075 1.297254

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.0561 0.1853 11.095 < 2e-16 ***
cylinder 0.2980 0.0361 8.257 1.20e-12 ***

Residual standard error: 0.4492 on 90 degrees of freedom
Multiple R-Squared: 0.431, Adjusted R-squared: 0.4247
F-statistic: 68.17 on 1 and 90 DF, p-value: 1.202e-12

Does a linear regression
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> summary(Cylinder.lm)
Call:
lm(formula = HighFuel ~ Cylinder, data = cars93)
Residuals:

Min 1Q Median 3Q Max
-1.056216 -0.199826 -0.004322 0.218147 1.315326

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.00000 0.40604 9.851 8.13e-16 ***
Cylinder3 -1.65724 0.46885 -3.535 0.000657 ***
Cylinder4 -0.76987 0.41016 -1.877 0.063870 .
Cylinder5 0.16667 0.49729 0.335 0.738321
Cylinder6 -0.01169 0.41254 -0.028 0.977454
Cylinder8 0.01199 0.43407 0.028 0.978031

Residual standard error: 0.406 on 87 degrees of freedom
Multiple R-Squared: 0.5537, Adjusted R-squared: 0.528
F-statistic: 21.58 on 5 and 87 DF, p-value: 5.495e-14

Does an ANOVA
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The internal representation of a factor is by a numeric vector taking values
from 1 to the number of levels. To convert a numeric vector to a factor,
you can use as.factor function, such as

> CylFact <- as.factor(cars93$cylinder)
> CylFact
[1] 4 6 6 6 4 4 6 6 6 8 8 4 4 6

[15] 4 6 6 8 8 6 4 6 4 4 4 6 4 6
[29] 4 6 4 4 4 4 4 6 6 8 3 4 4 4
[43] 4 4 4 4 4 8 6 6 6 8 4 4 4 6
[57] <NA> 4 6 4 6 4 6 4 4 6 6 4 4 6
[71] 6 4 4 4 6 6 6 4 4 3 4 4 3 4
[85] 4 4 4 4 5 4 6 4 5
Levels: 3 4 5 6 8

While the internal coding is from 1 to the number of levels of the factor,
they can have other names. To see what the internal coding looks like, use
the as.numeric function.
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> as.numeric(CylFact)
[1] 2 4 4 4 2 2 4 4 4 5 5 2 2 4 2 4 4 5 5 4 2 4 2

[24] 2 2 4 2 4 2 4 2 2 2 2 2 4 4 5 1 2 2 2 2 2 2 2
[47] 2 5 4 4 4 5 2 2 2 4 NA 2 4 2 4 2 4 2 2 4 4 2 2
[70] 4 4 2 2 2 4 4 4 2 2 1 2 2 1 2 2 2 2 2 3 2 4 2
[93] 3

The levels can be renamed with the levels function. For example, suppose
that a vector religion took the values 1 for Christian, 2 for Islam, 3 for
Judism, 4 for Shinto, and 5 for Flying Spaghetti Monsterism. Instead of
showing 1, 2, etc, we can show text labels instead by
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> religion
[1] 4 1 4 3 4 1 2 3 4 1 2 2 1 1 3 5 4 1 1 1

Levels: 1 2 3 4 5

> levels(religion) <- c("Christian", "Islam", "Judism", "Shinto", "FSM")
> religion
[1] Shinto Christian Shinto Judism Shinto Christian Islam
[8] Judism Shinto Christian Islam Islam Christian Christian

[15] Judism FSM Shinto Christian Christian Christian
Levels: Christian Islam Judism Shinto FSM
> levels(religion)
[1] "Christian" "Islam" "Judism" "Shinto" "FSM"
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How Does lm Treat Factors

Lets see what the how the model works for the Type example

• Compact

E[Y |Compact] = β0 + β1 × 0 + . . . + β5 × 0 = β0

• Large

E[Y |Large] = β0 + β1 × 1 + β2 × 0 + . . . + β5 × 0 = β0 + β1

• Van

E[Y |Van] = β0 + β1 × 0 + . . . + β4 × 0 + β5 × 1 = β0 + β5

So
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• β0 = E[Y |Compact]

• β1 is E[Y |Large]− E[Y |Compact]

• β5 is E[Y |Van]− E[Y |Compact]

So the parameters β1, . . . , β5 are contrasts of the Type means µi.
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Contrasts for Factors

As mentioned last class, there are different ways of creating predictor
variables for categorical factors for the model

yji = µ + αj + εji

Remember that for a factor with k levels, we need k − 1 variables. S has
a number of built in ways of handling that. There are 4 different types of
contrasts built-in S. They are
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• contr.treatment: Creates indicator variables for each level, except for
the first one. This allows for comparing a comparison of each level of the
factor with the first. Note that these are not actually contrasts. This
sets α1 = 0, αj+1 = βj; j < k, and µ = β0.

> options(contrasts=c("contr.treatment","contr.poly"))
> contrasts(cars93$Type)

Large Midsize Small Sporty Van
Compact 0 0 0 0 0
Large 1 0 0 0 0
Midsize 0 1 0 0 0
Small 0 0 1 0 0
Sporty 0 0 0 1 0
Van 0 0 0 0 1
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• contr.sum: In this parameterization,
∑

αj = 0 is enforced with αj =
βj; j < k and αk = −∑

βj. This is a common parameterization in
many Design of Experiments / ANOVA texts.

> options(contrasts=c("contr.sum","contr.poly"))
> contrasts(cars93$Type)

[,1] [,2] [,3] [,4] [,5]
Compact 1 0 0 0 0
Large 0 1 0 0 0
Midsize 0 0 1 0 0
Small 0 0 0 1 0
Sporty 0 0 0 0 1
Van -1 -1 -1 -1 -1
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• contr.helmert: In this parameterization, contrasts of the form α1−α2,
α1 + α2 − 2α3, α1 + α2 + α3 − 3α4. One way of thinking of this is that
the first contrast compares the two groups, the second compares the
average of the first two with the third, the third compares the average
of the first three with the fourth, etc.

> options(contrasts=c("contr.helmert","contr.poly"))
> contrasts(cars93$Type)

[,1] [,2] [,3] [,4] [,5]
Compact -1 -1 -1 -1 -1
Large 1 -1 -1 -1 -1
Midsize 0 2 -1 -1 -1
Small 0 0 3 -1 -1
Sporty 0 0 0 4 -1
Van 0 0 0 0 5
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• contr.poly: This is used with ordered factors. In some cases, categorical
variables have a natural ordering, such as the number of cylinders in a car
engine. Most don’t. However you might have fun arguing with people on
how to order Christianity, Islam, Judism, Shinto, or the Flying Spaghetti
Monsterism.

In the case where order makes sense, S has a set of contrasts which allow
looking for trends. They are based on orthogonal polynomials, assuming
the levels are equally spaced.

> cars93$CylinderO <- as.ordered(cars93$Cylinder)
> contrasts(cars93$Cylinder)
3 4 5 6 8

* 0 0 0 0 0
3 1 0 0 0 0
4 0 1 0 0 0
5 0 0 1 0 0
6 0 0 0 1 0
8 0 0 0 0 1
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> contrasts(cars93$CylinderO)
.L .Q .C ^4 ^5

* -0.5976143 0.5455447 -0.3726780 0.1889822 -0.06299408
3 -0.3585686 -0.1091089 0.5217492 -0.5669467 0.31497039
4 -0.1195229 -0.4364358 0.2981424 0.3779645 -0.62994079
5 0.1195229 -0.4364358 -0.2981424 0.3779645 0.62994079
6 0.3585686 -0.1091089 -0.5217492 -0.5669467 -0.31497039
8 0.5976143 0.5455447 0.3726780 0.1889822 0.06299408

The easiest way for setting the contrasts is with one of the following
options commands

• options(contrasts=c("contr.treatment","contr.poly"))
(R default)

• options(contrasts=c("contr.treatment","contr.poly"))

• options(contrasts=c("contr.treatment","contr.poly"))
(S-Plus default)
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By changing the contrast choice, you will get different parameter values,
but the same fitted values, residuals, R2, etc. They are all describing the
same model, just written out differently.

If you wish to see the current setting, give the command
options("contrasts").
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> options(contrasts=c("contr.sum","contr.poly"))
> type.sum.lm <- lm(HighFuel ~ Type, data=cars93)
>
> summary(type.lm)

Residuals:
Min 1Q Median 3Q Max

-0.87891 -0.19098 0.04712 0.22671 0.77217

> summary(type.sum.lm)

Call:
lm(formula = HighFuel ~ Type, data = cars93)

Residuals:
Min 1Q Median 3Q Max

-0.87891 -0.19098 0.04712 0.22671 0.77217
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> summary(type.lm)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.37677 0.08886 38.002 < 2e-16 ***
TypeLarge 0.37248 0.13921 2.676 0.00891 **
TypeMidsize 0.39651 0.11678 3.395 0.00103 **
TypeSmall -0.49786 0.11795 -4.221 5.95e-05 ***
TypeSporty 0.14754 0.13007 1.134 0.25980
TypeVan 1.20983 0.14809 8.169 2.24e-12 ***

> summary(type.sum.lm)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.64819 0.03880 94.024 < 2e-16 ***
Type1 -0.27141 0.08228 -3.299 0.00141 **
Type2 0.10106 0.09572 1.056 0.29397
Type3 0.12510 0.07303 1.713 0.09029 .
Type4 -0.76928 0.07427 -10.358 < 2e-16 ***
Type5 -0.12388 0.08672 -1.428 0.15676
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> anova(type.lm)
Analysis of Variance Table

Response: HighFuel
Df Sum Sq Mean Sq F value Pr(>F)

Type 5 21.1446 4.2289 33.476 < 2.2e-16 ***
Residuals 87 10.9906 0.1263
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> anova(type.sum.lm)
Analysis of Variance Table

Response: HighFuel
Df Sum Sq Mean Sq F value Pr(>F)

Type 5 21.1446 4.2289 33.476 < 2.2e-16 ***
Residuals 87 10.9906 0.1263
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Interactions

Does the effect of one predictor variable on the response depend of the level
of other predictor variables. For example consider
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It appears that the relationship between Weight and Fuel Use depends on
where the car is made Domestic.

If their were no interaction, we would want to fit the additive model

HighFuel ~ Weight + Domestic

In this case I would at least want to try the interaction model

HighFuel ~ Weight + Domestic + Weight:Domestic

In S, : is one way to indicate interactions. There are some shorthands. For
example * will give the highest order interaction, plus all main effects and
lower level interactions. A shorthand for the above is

HighFuel ~ Weight*Domestic
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Suppose we had three variables A, B, C. The model statements

y ~ A*B*C
y ~ A + B + C + A:B + A:C + B:C + A:B:C

are equivalent. Supppose that you only want up to the second order
interactions. This could be done by

y ~ (A + B + C)^2
y ~ A + B + C + A:B + A:C + B:C + A:B:C

This will omit terms like A:A (treats is as A)
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