
Programming in S

Statistics 135

Autumn 2005

Copyright c©2005 by Mark E. Irwin

Writing Functions in S

As we have seen during the term, S is a full featured, object-oriented
programming language. Previously we have discussed writing scripts and
running them within the language. Similarly it is easy to write your own
functions in S.

The general structure of a function is

function.name <- function(args) {

command 1
. . .

command n

function.output
}

The last object mentioned in the function is what is returned by the function.
However don’t have it as part of an assignment.

Writing Functions in S 1

Function Arguments

As with any high level language, you need to give arguments to your
function. Well sort of.

The argument list will usually be of the form

arg1, arg2, arg3 = default, arg4 = default, ...

As we’ve seen in the past, it is possible to give some arguments default
values, as has been done with arg3 and arg4. The first two arguments,
arg1 and arg2, since they do not have default settings, they must be
given.

In addition it is possible to pass in extra arguments that do not need to be
specified ahead of time with ‘...’.

The order that the arguments are listed in is the order expected when the
function is called. For example

Function Arguments 2

testfun <- function(x, y)
{ x / y }

> testfun(1, 2)
[1] 0.5

> testfun(2, 1)
[1] 2

> testfun(y=2, x=1)
[1] 0.5

> testfun(1)
Error in testfun(1) : argument "y" is missing, with no default

Function Arguments 3

testfun2 <- function(x, y = 1, z)
{ x * y + z}

> testfun2(2, 2, 4)
[1] 8

> testfun2(2, z=4) # y takes default value of 1
[1] 6

> testfun2(2, , 4) # not recommended
[1] 6

Function Arguments 4

Local vs Global Variables

Most of the time, variables inside functions are treated locally. That is,
assignments made inside the function do not affect what is stored in your
workspace.

succ <- function(n) {
n <- n + 1
n
}

> n
[1] 93

> succ(n)
[1] 94

> n
[1] 93

Local vs Global Variables 5

succ2 <- function(n) {n <- n+1}

> n
[1] 93

> succ2(n) # no output is produced
> n
[1] 93

When a function is called and it comes across something that hasn’t be
given as an argument or defined earlier in the function, it will go through
the search path until it finds the object.

> n <- 2

testfun3 <- function(x, y = 1, z)
{ x * y + z * n}

> testfun3(2, z=4)
[1] 10

Local vs Global Variables 6

While it does have its uses, doing this can be dangerous and it is usually
not recommended. Passing the values in as arguments is usually the way to
go.

In addition, it is possible for assignments not to be local to the function, but
global. You can reassign values in your workspace from within a function
as follows

succ3 <- function(n) {
x <- n + 1
n <<- x
x }

> n
[1] 2

> succ3(n)
[1] 3
> n
[1] 3

Local vs Global Variables 7

This can be very dangerous.

DO NOT DO THIS !!!!!!

Especially with any functions you might pass onto somebody else. You
might end up trashing some object you need without realizing it.

Local vs Global Variables 8

Control Structures (for, while, etc)

The standard control structures in most high level languages are available
in S. These include if statements, for loops, while loops, etc.

• if: The basic structure is

if (condition)
{ true branch commands }

else
{ false branch commands }

For example

Control Structures (for, while, etc) 9

fact2 <- function(n) {
if (n != trunc(n))
{ stop("n is not an integer") }

else
{ fact <- prod(1:n) }

fact
}

> fact2(3)
[1] 6

> fact2(3.5)
Error in fact2(3.5) : n is not an integer

Control Structures (for, while, etc) 10

In the if statement, the condition should be a single logical value. If
you are dealing with vectors, you may not get what you expect. An
alternative in this case is ifelse. For example

> y <- -1:4

> ylogy <- ifelse(y <= 0, 0, y*log(y))
Warning message: NaNs produced in: log(x)

> ylogy
[1] 0.000000 0.000000 0.000000 1.386294 3.295837 5.545177

Control Structures (for, while, etc) 11

• switch:

When there are more than 2 conditions that you need to deal with, as in

centre <- function(x, type) {
if (type == "mean") result <- mean(x)
else {
if (type == "median") result <- median(x)
else result <- mean(x, trim = 0.1)

}
result

}

it may be easier to deal with as

Control Structures (for, while, etc) 12

centre <- function(x, type) {
switch(type,
mean = mean(x),
median = median(x),
trimmed = mean(x, trim = .1))

}

> x <- rcauchy(10)

> centre(x, "mean")
[1] 0.6201826

> centre(x, "median")
[1] 0.5793802

> centre(x, "trimmed")
[1] 0.5566397

Control Structures (for, while, etc) 13

• for: The basic structure is

for (variable in sequence) commands

For example,

fact1 <- function(n) {
fact <- 1
for (i in 1:n)
fact <- fact * i

fact
}

> fact1(10)
[1] 3628800

Control Structures (for, while, etc) 14

Note that the sequence doesn’t need to be a numeric vector. It could
be a vector of strings or more interestingly a list or data frame. For
example

> for (i in crabs)
+ print(summary(i))
B O

100 100
F M

100 100
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.0 13.0 25.5 25.5 38.0 50.0
Min. 1st Qu. Median Mean 3rd Qu. Max.
7.20 12.90 15.55 15.58 18.05 23.10
Min. 1st Qu. Median Mean 3rd Qu. Max.
6.50 11.00 12.80 12.74 14.30 20.20
Min. 1st Qu. Median Mean 3rd Qu. Max.

14.70 27.28 32.10 32.11 37.23 47.60
Min. 1st Qu. Median Mean 3rd Qu. Max.

17.10 31.50 36.80 36.41 42.00 54.60
Min. 1st Qu. Median Mean 3rd Qu. Max.

Control Structures (for, while, etc) 15

6.10 11.40 13.90 14.03 16.60 21.60
> names(crabs)
[1] "sp" "sex" "index" "FL" "RW" "CL" "CW" "BD"
> summary(crabs)
sp sex index FL RW CL
B:100 F:100 Min. : 1.0 Min. : 7.20 Min. : 6.50 Min. :14.70
O:100 M:100 1st Qu.:13.0 1st Qu.:12.90 1st Qu.:11.00 1st Qu.:27.27

Median :25.5 Median :15.55 Median :12.80 Median :32.10
Mean :25.5 Mean :15.58 Mean :12.74 Mean :32.11
3rd Qu.:38.0 3rd Qu.:18.05 3rd Qu.:14.30 3rd Qu.:37.23
Max. :50.0 Max. :23.10 Max. :20.20 Max. :47.60

CW BD
Min. :17.10 Min. : 6.10
1st Qu.:31.50 1st Qu.:11.40
Median :36.80 Median :13.90
Mean :36.41 Mean :14.03
3rd Qu.:42.00 3rd Qu.:16.60
Max. :54.60 Max. :21.60

Control Structures (for, while, etc) 16

• while: The basic structure is

while (condition) commands

The while structure will keep repeating commands until a certain
condition is met.

For example

fact3 <- function(n) {
fact <- 1; i <- 1
while (i != n) {
i <- i + 1
fact <- fact * i

}
fact

}

Control Structures (for, while, etc) 17

> fact3(5)
[1] 120

> fact3(5.5)

If I hadn’t stopped the command in the second example, it would still
be running. You need to be careful in setting your conditions in while
statements or otherwise you could create an infinite loop.

Control Structures (for, while, etc) 18

• repeat:

This is similar to while but you kick out of the loop in a slightly different
way.

The basic structure is

repeat commands

However to break out of the loop, you need to have a break command.
For example

fact4 <- function(n) {
fact <- 1; i <- 1
repeat {
i <- i + 1
fact <- fact * i
if (i == n) break

}
fact }

Control Structures (for, while, etc) 19

> fact4(6)
[1] 720

> fact4(6.5)

In this example, the loop keeps repeating until i == n. A similar
problems occurs with this function if a non integer in input

If you are going to use equality constraints to stop loops you need to be
careful. Consider the following example

> exp(3)/exp(1) == exp(2)
[1] TRUE

> exp(102)/exp(100) == exp(2)
[1] FALSE

> exp(2) - exp(3)/exp(1)
[1] 0

Control Structures (for, while, etc) 20

> exp(2) - exp(102)/exp(100)
[1] 8.881784e-16

All numbers in S are stored as double precision numbers, which gives 16
or 17 significant digits. So as calculations procedure, small errors can
kick in.

> print((sqrt(2))^2, digits=17)
[1] 2.0000000000000004

> print(sqrt(2^2), digits=17)
[1] 2

So checking to see if two numbers are the same, while if you had infinite
precision you would be fine, you can make mistakes in S (or C, Fortran,
Pascal, etc).

Usually you want do see if two numbers differ from a small amount,
usually based on the machine precision.

Control Structures (for, while, etc) 21

