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Model Selection Procedures

Consider a regression setting with K potential predictor variables and you
wish to explore the set of different possible models, assuming no polynomial
or interaction effects. Then there are 2K possible models. Now if K is small
examining all of them isn’t a problems but if K becomes even moderate in
size 2K can get large quickly. For example 250 ≈ 1 × 1015. Trying all of
these models will be prohibitive.

Another problem is what criteria do we want to use pick good potential
models. One criteria would be to pick the model with the highest R2 or
equivalently the model with the smallest SSE since

R2 =
SSM

SSTot
= 1− SSE

SSTot

This will always choose the model with all the predictors, which will probably
include variables we don’t want as overfit models often have poor predictive
properties.
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So we need to find a different criterion for picking reasonable models, i.e.
ones that match the data well and tend to have few predictor variables
(parsimony).

PROC REG has an option (SELECTION) that allows us to deal with these two
problems.
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Example: Surgery Survival Times

This dataset looks at survival times for 54 patients undergoing a particular
type of liver operation.

The response variable is logsurv, the base 10 log of survival time of
patients. The predictor variables are:

• blood: blood clotting score

• prognostic: prognostic index, which includes the age of the patient

• enzyme: enzyme function test score

• liver: liver function test score

Model Selection Procedures 3



Scatter Plot Matrix

blood
6

8

10 6 8 10

2

4

6

2 4 6

prognostic
60

80

100
60 80 100

20

40

60

20 40 60

enzyme
80
100
120

80100120

20
40
60

20 40 60

liver4
5
6 4 5 6

1
2
3

1 2 3

logsurv
2.5

3.0
2.5 3.0

1.5

2.0
1.5 2.0

Model Selection Procedures 4



Forward, Backward, and Stepwise Selection

One approach to the problem is to deal with building the model one variable
at a time. There are three common related approaches for doing this,
forward selection, backward deletion, and stepwise selection.

• Forward selection: This approach builds the model starting with no
variables in the model and adds useful variables one by one. The general
scheme is as follows

1. For each predictor variable xi not in the model, run a regression with
this variable and those already in the model. Calculate the p-value (or
F or |t| statistic) to add this variable to the model.

2. Choose the variable with the smallest p-value (or equivalently largest
F or |t|). If this p-value < padd (or equivalently F > Fadd or |t| > tadd)
add the variable to the model and go to step 1.

3. Otherwise stop and declare variables already added as the model.
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• Backward deletion: Instead of starting with no variables in the model,
start with all predictor variable in the model and remove unhelpful
variables from the model one by one. The algorithm for this scheme is

1. Run the regression with all variables currently in the model and
calculate the p-value (or F and |t| statistics) for each.

2. Choose the variable with the largest p-value (or equivalently smallest F
or |t|). If this p-value ≥ pdrop (or equivalently F > Fdrop or |t| > tdrop)
drop the variable from the model and go to step 1.

3. Otherwise stop and declare the remaining variables as the model.

Both of these approaches have problems. Forward selection can add
variables early on that in the long run we don’t want to include in the
model. Similarly, backward deletion can remove variables that we should
probably keep. An alternative that generally works better is
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• Stepwise selection: This approach combines both forward selection and
backward deletion. It allows variable added early on to be dropped out
and variables that are dropped at one point to be added back in. The
algorithm is as follows

1. For each predictor variable xi not in the model, run a regression with
this variable and those already in the model. Calculate the p-value (or
F or |t| statistic) to add this variable to the model.

2. Choose the variable with the smallest p-value (or equivalently largest
F or |t|). If this p-value < padd (or equivalently F > Fadd or |t| > tadd)
add the variable to the model.

3. Run the regression with all variables currently in the model and
calculate the p-value (or F and |t| statistics) for each.

4. Choose the variable with the largest p-value (or equivalently smallest F
or |t|). If this p-value ≥ pdrop (or equivalently F > Fdrop or |t| > tdrop)
drop the variable from the model.

5. If no variables are added in step 2 or dropped in step 4 stop and
declare the variables currently selected as the model. Otherwise go to
step 1.
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For this algorithm to work it is necessary that padd ≤ pdrop (or
equivalently Fadd ≥ Fdrop and tadd ≥ tdrop. If not, the algorithm will not
terminate as it is possible to have a variable with pdrop < p < padd which
will lead to the variable being added in and then immediately dropped.

For each of these algorithms values for padd and pdrop need to be define
(equivalently Fadd and Fdrop or tadd and tdrop). Common choices for
these are

– padd = pdrop = 0.05
– Fadd = Fdrop = 4.0
– tadd = tdrop = 2.0

Of course these can be changed to make it easier or harder to add or
remove variables. The defaults for SAS are

– Forward selection: padd = 0.50
– Backward deletion: pdrop = 0.10
– Stepwise selection: padd = pdrop = 0.15
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These procedures can be run from SAS using PROC REG using the
SELECTION option. For example, the 3 schemes using the common cutoffs
are done by

PROC REG DATA=surgery;

Forward: MODEL logsurv = blood prognostic enzyme liver /
SELECTION = FORWARD SLENTRY = 0.05;

Backward: MODEL logsurv = blood prognostic enzyme liver /
SELECTION = BACKWARD SLSTAY = 0.05;

Stepwise: MODEL logsurv = blood prognostic enzyme liver /
SELECTION = STEPWISE SLENTRY = 0.05 SLSTAY = 0.05;

As can be seen padd is set by SLENTRY and pdrop is set by SLSTAY.

The output (edited) for these three possibilities are
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• Forward selection:

Forward Selection: Step 1

Variable liver Entered: R-Square = 0.5274 and C(p) = 788.1481

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 2.09514 2.09514 58.02 <.0001
Error 52 1.87763 0.03611
Corrected Total 53 3.97277

Parameter Standard
Variable Estimate Error Type II SS F Value Pr > F

Intercept 1.69638 0.07174 20.18803 559.10 <.0001
liver 0.18575 0.02439 2.09514 58.02 <.0001
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Forward Selection: Step 2

Variable enzyme Entered: R-Square = 0.6865 and C(p) = 507.8964

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 2 2.72744 1.36372 55.85 <.0001
Error 51 1.24533 0.02442
Corrected Total 53 3.97277

Parameter Standard
Variable Estimate Error Type II SS F Value Pr > F

Intercept 1.38878 0.08447 6.60079 270.32 <.0001
enzyme 0.00565 0.00111 0.63230 25.89 <.0001
liver 0.13901 0.02206 0.96994 39.72 <.0001
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Forward Selection: Step 3

Variable prognostic Entered: R-Square = 0.8829 and C(p) = 161.6625

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 3 3.50756 1.16919 125.66 <.0001
Error 50 0.46521 0.00930
Corrected Total 53 3.97277

Parameter Standard
Variable Estimate Error Type II SS F Value Pr > F

Intercept 0.94226 0.07139 1.62089 174.21 <.0001
prognostic 0.00790 0.00086260 0.78012 83.85 <.0001
enzyme 0.00700 0.00070128 0.92694 99.63 <.0001
liver 0.08185 0.01498 0.27780 29.86 <.0001
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Forward Selection: Step 4

Variable blood Entered: R-Square = 0.9724 and C(p) = 5.0000

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 4 3.86300 0.96575 431.10 <.0001
Error 49 0.10977 0.00224
Corrected Total 53 3.97277

Parameter Standard
Variable Estimate Error Type II SS F Value Pr > F

Intercept 0.48876 0.05023 0.21208 94.67 <.0001
blood 0.06852 0.00544 0.35544 158.66 <.0001
prognostic 0.00925 0.00043673 1.00583 448.99 <.0001
enzyme 0.00947 0.00039625 1.28075 571.71 <.0001
liver 0.00193 0.00971 0.00008809 0.04 0.8436
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All variables have been entered into the model.

Summary of Forward Selection

Variable Number Partial Model
Step Entered Vars In R-Square R-Square C(p) F Value Pr > F

1 liver 1 0.5274 0.5274 788.148 58.02 <.0001
2 enzyme 2 0.1592 0.6865 507.896 25.89 <.0001
3 prognostic 3 0.1964 0.8829 161.662 83.85 <.0001
4 blood 4 0.0895 0.9724 5.0000 158.66 <.0001

So in this example, all variables get added by forward selection.
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• Backward elimination

Backward Elimination: Step 0
All Variables Entered: R-Square = 0.9724 and C(p) = 5.0000

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Pr > F

Model 4 3.86300 0.96575 431.10 <.0001
Error 49 0.10977 0.00224
Corrected Total 53 3.97277

Parameter Standard
Variable Estimate Error Type II SS F Value Pr > F

Intercept 0.48876 0.05023 0.21208 94.67 <.0001
blood 0.06852 0.00544 0.35544 158.66 <.0001
prognostic 0.00925 0.00043673 1.00583 448.99 <.0001
enzyme 0.00947 0.00039625 1.28075 571.71 <.0001
liver 0.00193 0.00971 0.00008809 0.04 0.8436
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Backward Elimination: Step 1

Variable liver Removed: R-Square = 0.9723 and C(p) = 3.0393

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 3 3.86291 1.28764 586.04 <.0001
Error 50 0.10986 0.00220
Corrected Total 53 3.97277

Parameter Standard
Variable Estimate Error Type II SS F Value Pr > F

Intercept 0.48362 0.04263 0.28279 128.71 <.0001
blood 0.06923 0.00408 0.63315 288.17 <.0001
prognostic 0.00929 0.00038250 1.29732 590.45 <.0001
enzyme 0.00952 0.00030641 2.12263 966.07 <.0001
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All variables left in the model are significant at the 0.0500 level.

Summary of Backward Elimination

Variable Number Partial Model
Step Removed Vars In R-Square R-Square C(p) F Value Pr > F

1 liver 3 0.0000 0.9723 3.0393 0.04 0.8436

So for this example blood, prognostic and enzyme are kept and liver
is dropped from the model.
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• Stepwise selection:

Stepwise Selection: Step 1

Variable liver Entered: R-Square = 0.5274 and C(p) = 788.1481

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 2.09514 2.09514 58.02 <.0001
Error 52 1.87763 0.03611
Corrected Total 53 3.97277

Parameter Standard
Variable Estimate Error Type II SS F Value Pr > F

Intercept 1.69638 0.07174 20.18803 559.10 <.0001
liver 0.18575 0.02439 2.09514 58.02 <.0001
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Stepwise Selection: Step 2

Variable enzyme Entered: R-Square = 0.6865 and C(p) = 507.8964

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 2 2.72744 1.36372 55.85 <.0001
Error 51 1.24533 0.02442
Corrected Total 53 3.97277

Parameter Standard
Variable Estimate Error Type II SS F Value Pr > F

Intercept 1.38878 0.08447 6.60079 270.32 <.0001
enzyme 0.00565 0.00111 0.63230 25.89 <.0001
liver 0.13901 0.02206 0.96994 39.72 <.0001
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Stepwise Selection: Step 3

Variable prognostic Entered: R-Square = 0.8829 and C(p) = 161.6625

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 3 3.50756 1.16919 125.66 <.0001
Error 50 0.46521 0.00930
Corrected Total 53 3.97277

Parameter Standard
Variable Estimate Error Type II SS F Value Pr > F

Intercept 0.94226 0.07139 1.62089 174.21 <.0001
prognostic 0.00790 0.00086260 0.78012 83.85 <.0001
enzyme 0.00700 0.00070128 0.92694 99.63 <.0001
liver 0.08185 0.01498 0.27780 29.86 <.0001
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Stepwise Selection: Step 4

Variable blood Entered: R-Square = 0.9724 and C(p) = 5.0000

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 4 3.86300 0.96575 431.10 <.0001
Error 49 0.10977 0.00224
Corrected Total 53 3.97277

Parameter Standard
Variable Estimate Error Type II SS F Value Pr > F

Intercept 0.48876 0.05023 0.21208 94.67 <.0001
blood 0.06852 0.00544 0.35544 158.66 <.0001
prognostic 0.00925 0.00043673 1.00583 448.99 <.0001
enzyme 0.00947 0.00039625 1.28075 571.71 <.0001
liver 0.00193 0.00971 0.00008809 0.04 0.8436
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Stepwise Selection: Step 5

Variable liver Removed: R-Square = 0.9723 and C(p) = 3.0393

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 3 3.86291 1.28764 586.04 <.0001
Error 50 0.10986 0.00220
Corrected Total 53 3.97277

Parameter Standard
Variable Estimate Error Type II SS F Value Pr > F

Intercept 0.48362 0.04263 0.28279 128.71 <.0001
blood 0.06923 0.00408 0.63315 288.17 <.0001
prognostic 0.00929 0.00038250 1.29732 590.45 <.0001
enzyme 0.00952 0.00030641 2.12263 966.07 <.0001
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All variables left in the model are significant at the 0.0500 level.

No other variable met the 0.0500 significance level for entry into
the model.

Summary of Stepwise Selection

Variable Variable Number Partial Model
Step Entered Removed Vars In R-Square R-Square C(p) F Value Pr > F

1 liver 1 0.5274 0.5274 788.148 58.02 <.0001
2 enzyme 2 0.1592 0.6865 507.896 25.89 <.0001
3 prognostic 3 0.1964 0.8829 161.662 83.85 <.0001
4 blood 4 0.0895 0.9724 5.0000 158.66 <.0001
5 liver 3 0.0000 0.9723 3.0393 0.04 0.8436

So the result of stepwise is the same as backwards in this case.
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Generally the three procedures can give different answers, particularly
in datasets with many predictor variables. The relationship between
the different results depends on the correlations between the different
variables.

In this example, they can be gotten by

PROC CORR DATA=surgery;
VAR logsurv blood prognostic enzyme liver;
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The CORR Procedure

Simple Statistics

Variable N Mean Std Dev Sum

logsurv 54 2.20614 0.27378 119.13180
blood 54 5.78333 1.60303 312.30000
prognostic 54 63.24074 16.90253 3415
enzyme 54 77.11111 21.25378 4164
liver 54 2.74426 1.07036 148.19000

Simple Statistics

Variable Minimum Maximum

logsurv 1.53150 2.91910
blood 2.60000 11.20000
prognostic 8.00000 96.00000
enzyme 23.00000 119.00000
liver 0.74000 6.40000
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Pearson Correlation Coefficients, N = 54
Prob > |r| under H0: Rho=0

logsurv blood prognostic enzyme liver

logsurv 1.00000 0.34640 0.59289 0.66512 0.72621
0.0103 <.0001 <.0001 <.0001

blood 0.34640 1.00000 0.09012 -0.14963 0.50242
0.0103 0.5169 0.2802 0.0001

prognostic 0.59289 0.09012 1.00000 -0.02361 0.36903
<.0001 0.5169 0.8655 0.0060

enzyme 0.66512 -0.14963 -0.02361 1.00000 0.41642
<.0001 0.2802 0.8655 0.0017

liver 0.72621 0.50242 0.36903 0.41642 1.00000
<.0001 0.0001 0.0060 0.0017
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Note that it is possible to force variables to be in model. For example
assume that you want to have prognostic in every model examined.

You can force variables to be in the model by listing them first in the
model statement and to add an Include=n option. For example

Stepwise_Force: MODEL logsurv = prognostic liver blood enzyme /
SELECTION = STEPWISE SLENTRY = 0.05 SLSTAY = 0.05
INCLUDE = 1 /* force prognostic into model */
DETAILS = SUMMARY; /* only print summary info */

Summary of Stepwise Selection

Variable Variable Number Partial Model
Step Entered Removed Vars In R-Square R-Square C(p) F Value Pr > F

1 enzyme 2 0.4615 0.8130 283.669 125.83 <.0001
2 blood 3 0.1594 0.9723 3.0393 288.17 <.0001

Forward, Backward, and Stepwise Selection 27



Model Selection Criteria

Consider the situation with K potential predictor values x1, x2, . . . , xK. We
want to find small, good models using these variables.

To do this we need criteria to decide what is a good model and what is a
poor model. There are many available, some of which SAS will calculate.
We will discuss two, Adjusted R2 and Mallow’s Cp.

For what follows, it is assumed that an intercept term will always be included
in the model. Usually you will want to include it anyways, so this is no real
constraint.
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Adjusted R2

As mentioned earlier, R2 is not a good selection criterion as it must be
maximized when all variables are in the model. In additional consider the
nested models

Model 1 : y = β0 + β1x1 + . . . + βkxk + ε

Model 2 : y = β0 + β1x1 + . . . + βkxk + . . . + βk+mxk+mε

So model 2 has an additional m predictor variables. It can be shown that
R2(M2) ≥ R2(M1), i.e. adding variables can’t decrease R2.

Now assume that the true model is

y = β0 + ε

i.e. none of the predictors are associated with the response. Now assume
that a model with k predictors is tried with a data set with n observations.
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Then it can be shown that

E[R2] ≈ k

n− 1

For these reasons a modified measure, the adjusted R2

R̄2 = 1−
(

n− 1
n− k − 1

)
(1−R2) = 1−

(
n− 1

n− k − 1

)
SSE

SSTot
= 1− MSE

SSTot
n−1

is often used.
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It can be shown that adding variables to a model won’t necessarily increase
R̄2. In fact R̄2(M2) ≥ R̄2(M1) only if the F statistic for examining

H0 : βk+1 = . . . = βk+m = 0 vs HA : not all 0

is greater than 1.

In addition is can be shown in the case where the true model is

y = β0 + ε

that when investigating model 1

E[R̄2] ≈ 0
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In the case when model 1 is the correct model, it can be shown that
when investigating model 1 or any version of model 2 (one or more extra
predictors) that

E[R̄2] > 0

(at least approximately)

Thus one approach to choosing a model is to select the one with the largest
adjusted R2.

To search for models based on adjusted R2 in SAS, the following code can
be used.

PROC REG DATA=surgery;

Adjusted_Rsq: MODEL logsurv = blood prognostic enzyme liver /
SELECTION = ADJRSQ;

This will print a summary for all possible models, ordered by adjusted R2.
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Number in Adjusted
Model R-Square R-Square Variables in Model

3 0.9707 0.9723 blood prognostic enzyme
4 0.9701 0.9724 blood prognostic enzyme liver
3 0.8759 0.8829 prognostic enzyme liver
2 0.8056 0.8130 prognostic enzyme
3 0.7023 0.7192 blood enzyme liver
2 0.6742 0.6865 enzyme liver
2 0.6358 0.6496 prognostic liver
2 0.6319 0.6458 blood enzyme
3 0.6290 0.6500 blood prognostic liver
1 0.5183 0.5274 liver
2 0.5093 0.5278 blood liver
1 0.4317 0.4424 enzyme
2 0.4160 0.4381 blood prognostic
1 0.3390 0.3515 prognostic
1 0.1031 0.1200 blood
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Note that this selection criterion is the equivalent to minimizing MSE as

R̄2 = 1− MSE
SSTot
n−1

R̄2 will increase when MSE decrease.
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Mallow’s Cp

Lets consider how well ŷi does as an estimator of µi = E[yi]

ŷi − µi = (E[ŷi]− µi) + (ŷi − E[ŷi])

= Bias + Random error

E[(ŷi − µi)2] = (E[ŷi]− µi)2 + Var(ŷi)

= Bias2 + Variance

For a model with p− 1 predictors (plus the intercept), let the total squared
bias,SSB(p), be defined as
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SSB(p) =
n∑

i=1

(E[ŷi]− µi)2

and define the standardized total mean square error as

Γp =
1
σ2

{
n∑

i=1

(E[ŷi]− µi)2 +
n∑

i=1

Var(ŷi)

}

=
SSB(p)

σ2
+

1
σ2

n∑

i=1

Var(ŷi)

It can be shown that

n∑

i=1

Var(ŷi) = pσ2
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and

E[SSE(p)] = SSB(p) + (n− p)σ2

Plugging these in gives

Γp =
1
σ2

{
E[SSE(p)]− (n− p)σ2 + pσ2

}

=
E[SSE(p)]

σ2
− n + 2p

So the idea is to find the model with a low value of Γp. Since we can’t
determine this, we need to estimate it. Suppose that σ̂2 is a good estimate
of σ2. Then if we replace E[SSE(p)] by the observed value SSE(p), then
an estimate of Γp is

Mallow’s Cp 37



Cp =
SSE(p)

σ̂2
− n + 2p

If the p-term model has negligible bias, then SSB(p) = 0 which implies
E[SSE(p)] = (n− p)σ2 and

E[Cp|Bias = 0] ≈ (n− p)σ2

σ2
− n + 2p = p

The usual estimate used for σ̂2 is MSE(K + 1), the MSE from the model
using all predictors, which gives

Cp =
SSE(p)

MSE(K + 1)
− n + 2p

Note that with the definition, for the model with all predictors

Cp = p = K + 1
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So usually we want to find a model with a small Cp and Cp ≈ p.

One way to think of Mallow’s Cp is to look at the SSE but then to add
a penalty term based on the number of parameters in the model. So you
want to keep adding terms while the SSE continues to drop at a fairly high
rate.

To select models by Cp, the following SAS code can be used

PROC REG DATA=surgery;

Cp: MODEL logsurv = blood prognostic enzyme liver /
SELECTION = CP;

The resulting output is similar to what we saw earlier
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Number in
Model C(p) R-Square Variables in Model

3 3.0393 0.9723 blood prognostic enzyme
4 5.0000 0.9724 blood prognostic enzyme liver
3 161.6625 0.8829 prognostic enzyme liver
2 283.6695 0.8130 prognostic enzyme
3 451.9870 0.7192 blood enzyme liver
2 507.8964 0.6865 enzyme liver
2 573.4372 0.6496 prognostic liver
3 574.7100 0.6500 blood prognostic liver
2 580.1453 0.6458 blood enzyme
1 788.1481 0.5274 liver
2 789.3404 0.5278 blood liver
1 938.8651 0.4424 enzyme
2 948.5500 0.4381 blood prognostic
1 1100.012 0.3515 prognostic
1 1510.590 0.1200 blood

Mallow’s Cp 40



So in this case Cp selects the same model as R̄2 (and stepwise and
backward). However the ordering of the different models is slightly different.
For larger datasets, these methods can find different models. For smaller
examples, these methods will tend to find similar models.

In SAS there are a couple of other options for SELECTION. These are

• RSQUARE: Lists all models by R2.

• MAXR and MINR: Stepwise type procedures which add variables based on
changes in R2. These approaches try to find the best 2 variable model,
3 variable model, 4 variable model, etc

• NONE: Fits the model with all variables.
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