
Matrices

Statistics 135

Autumn 2005

Copyright c©2005 by Mark E. Irwin

Matrix Calculations in Regression

Linear Model:
Y = Xβ + ε

where

• Responses Y : n× 1 (rows times cols)

• Predictors X: n× p

• Errors ε: n× 1

In this formulation n is the number of observations and p is the number
of predictors. Usually the first column of X is all 1, making β1, the first
component of β, the intercept. However for what follows, this is not
required.

Matrix Calculations in Regression 1

In what follows, it will be assumed that rank(X) = p, which will lead to
unique least squares solutions of β. One way of thinking of this, is that no
predictor is a linear combination of the rest.

The least squares solutions for β satisfy

XTXβ̂ = XTY (Normal Equations)

β̂ = (XTX)−1XTY

The vector of fitted values satisfy

Ŷ = Xβ̂

= X(XTX)−1XTY

= HY

Matrix Calculations in Regression 2

The matrix H is known as the hat matrix (a n×n matrix) and is important
for many regression calculations and diagnostics

The vector of residuals satisfy

e = Y − Ŷ = (I −H)Y

Two important variance results are

Var(β̂) = σ2(XTX)−1

Var(e) = σ2(I −H)

assuming that Var(ε) = σ2I (constant variance and uncorrelated).

Matrix Calculations in Regression 3

The sums of squares decomposition can be calculated by

SSR = Y T

[
H − 1

n
J

]
Y

SSE = Y T (I −H)Y

SST = Y T

[
I − 1

n
J

]
Y

where J is a n× n matrix of all 1’s.

The vector h = diag(H) is known as the leverages. They can be used for
the following calculations

Var(Ŷi) = σ2hi

Var(ei) = σ2(1− hi)

Matrix Calculations in Regression 4

In addition, h can be used to search for potentially influential observations.
For example, values of hi > 2p

n are often considered as outliers in their X
values. In addition, Cook’s Distance, one common measure of influence
depends on h

Di =
e2

i

pMSE

hi

(1− hi)2

Other common influence measures, such as DFFITS, are also simple
functions of h.

Want to use R to calculate these statistics. Note that S usually doesn’t
use the following approach to do regression calculations. Instead, they are
usually based on the QR decomposition, which can be faster and numerically
more stable.

To illustrate this calculations, we will use the Cars data set to examine the
model

HighFueli = β1 + β2Weighti + β3EngSizei + εi

Matrix Calculations in Regression 5

Creating Matrices

• matrix function

matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE,
dimnames = NULL)

data: an optional data vector.

nrow: the desired number of rows

ncol: the desired number of columns

byrow: logical. If ’FALSE’ (the default) the matrix is
filled by columns, otherwise the matrix is filled
by rows.

Creating Matrices 6

dimnames: A ’dimnames’ attribute for the matrix: a ’list’
of length 2 giving the row and column names
respectively.

The matrix function converts vectors to matrices

> matrix(1:6, ncol=3) # byrow=F is default
[,1] [,2] [,3]

[1,] 1 3 5
[2,] 2 4 6

> matrix(1:6, ncol=3, byrow=T)
[,1] [,2] [,3]

[1,] 1 2 3
[2,] 4 5 6

If the dimension of the vector doesn’t match ncol × nrow, the vector
will repeat as many times as necessary to fill the matrix

Creating Matrices 7

> matrix(1:3, ncol=3, nrow=2)
[,1] [,2] [,3]

[1,] 1 3 2
[2,] 2 1 3

> J <- matrix(1, ncol=2, nrow=2)
> J

[,1] [,2]
[1,] 1 1
[2,] 1 1

• Coerce an object to a matrix

It is possible to convert other objects into a matrix, with data frames and
vectors begin the most common objects to convert. The most common
approach is with the as.matrix function.

as.matrix(x)

x: an R object.

Creating Matrices 8

If x is a vector, is is converted to a column vector (i.e. a matrix with
one column).

When trying to do the conversion, it pick a type that is consistent with
all of x. This can be important if x is a data frame containing a mixture
of types.

> cars93[1:3,1:4]
Manu Model Type MinPrice

1 Acura Integra Small 12.9
2 Acura Legend Midsize 29.2
3 Audi 90 Compact 25.9

> as.matrix(cars93[1:3,1:4])
Manu Model Type MinPrice

1 "Acura" "Integra" "Small" "12.9"
2 "Acura" "Legend" "Midsize" "29.2"
3 "Audi" "90" "Compact" "25.9"

Creating Matrices 9

> cars93[1:3,4:6]
MinPrice MidPrice MaxPrice

1 12.9 15.9 18.8
2 29.2 33.9 38.7
3 25.9 29.1 32.3

> as.matrix(cars93[1:3,4:6])
MinPrice MidPrice MaxPrice

1 12.9 15.9 18.8
2 29.2 33.9 38.7
3 25.9 29.1 32.3

Creating Matrices 10

Another option for coercing data frames is the data.frame function

data.matrix(frame)

frame: a data frame whose components are logical vectors,
factors or numeric vectors.

Instead of coercing the elements of the frame to the most consistent
type, it converts the frame to a numeric matrix. Character strings and
factors get converted to numeric codes.

> data.matrix(cars93[1:3,1:4])
Manu Model Type MinPrice

1 1 49 4 12.9
2 1 54 3 29.2
3 2 9 1 25.9

Creating Matrices 11

• Binding vectors and matrices

It is also possible to combine vectors and matrices together to make
larger matrices with the cbind (column bind) and rbind (row bind)
functions.

> A <- cbind(1:3, 4:6)
> A

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

> B <- rbind(1:3, 4:6)
> B

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6

Creating Matrices 12

> cbind(A, 100:102)
[,1] [,2] [,3]

[1,] 1 4 100
[2,] 2 5 101
[3,] 3 6 102

> rbind(B, 100:102)
[,1] [,2] [,3]

[1,] 1 2 3
[2,] 4 5 6
[3,] 100 101 102

With cbind, vectors get treated as column vectors. Similarly, rbind
treats vectors as row vectors.

You need to be careful that dimensions match. Vectors will get repeated
or truncated to make the binding work.

Creating Matrices 13

> cbind(A, 100)
[,1] [,2] [,3]

[1,] 1 4 100
[2,] 2 5 100
[3,] 3 6 100

> cbind(A,B)
Error in cbind(...) : number of rows of matrices must match
(see arg 2)

> rbind(B, 100:103)
[,1] [,2] [,3]

[1,] 1 2 3
[2,] 4 5 6
[3,] 100 101 102
Warning message:
number of columns of result
not a multiple of vector length (arg 2) in: rbind(B, 100:103)

Creating Matrices 14

• Special matrix functions

The most useful of these (and the only one I can think of right now) is
the diag function. This function has three purposes, to make a diagonal
matrix from a vector, create identity matrices, and extract the diagonal
element from a matrix (not necessarily square).

> diag(1:3)
[,1] [,2] [,3]

[1,] 1 0 0
[2,] 0 2 0
[3,] 0 0 3

> diag(3) # a 3 x 3 identity matrix
[,1] [,2] [,3]

[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

Creating Matrices 15

> C <- cbind(A, 100:102)
> C

[,1] [,2] [,3]
[1,] 1 4 100
[2,] 2 5 101
[3,] 3 6 102
> diag(C)
[1] 1 5 102

> A
[,1] [,2]

[1,] 1 4
[2,] 2 5
[3,] 3 6
> diag(A)
[1] 1 5

Creating Matrices 16

Regression Example

> attach(cars93)

> HighFuel <- 100/HighMPG

> n <- length(HighFuel)

> In <- diag(n)
> J <- matrix(1, ncol=n, nrow=n)

> Y <- matrix(HighFuel, ncol=1)
> X <- cbind(Intercept=rep(1,n), Weight, EngSize)
> X[1:4,]

Intercept Weight EngSize
[1,] 1 2705 1.8
[2,] 1 3560 3.2
[3,] 1 3375 2.8
[4,] 1 3405 2.8

Regression Example 17

> p <- dim(X)[2] # dim gives the dimension of a matrix.
The first component is the number of rows
The second is the number of columns

> p
[1] 3

> betahat <- solve(t(X) %*% X, t(X) %*% Y)

t(X) calculates the transpose of X

> XtXinv <- solve(t(X) %*% X)

solve(A) gives inverse of A

> betahat2 <- XtXinv %*% t(X) %*% Y

Regression Example 18

> betahat # usually the better approach

[,1]
Intercept 0.717936352
Weight 0.001045061
EngSize -0.145369340
> betahat2

[,1]
Intercept 0.717936352
Weight 0.001045061
EngSize -0.145369340

> betahat - betahat2
[,1]

Intercept -1.268985e-13
Weight 4.119968e-17
EngSize -5.856426e-15

> H <- X %*% XtXinv %*% t(X)

Regression Example 19

> h <- diag(H)

> fits <- H %*% Y
> resids <- (In - H) %*% Y

> SSR <- t(Y) %*% (H - J/n) %*% Y
> SSE <- t(Y) %*% (In - H) %*% Y
> SST <- t(Y) %*% (In - J/n) %*% Y

> SSR <- as.numeric(SSR) # need to convert to scalar
> SSE <- as.numeric(SSE)
> SST <- as.numeric(SST)

> MSE <- SSE / (n - p)

> varbeta <- MSE * XtXinv # estimated variance matrix
> sefits <- sqrt(MSE * h)
> seresid <- sqrt(MSE * (1 - h))

Regression Example 20

b <- solve(A,x) vs b <- solve(A) %*% x

The above S code are equivalent approaches to solving the system of
equations

Ab = x

Usually the first approach is preferable for two reasons

• Lower computational burden

• Numerically more stable - fewer computational errors creep in

So where possible, use solve instead of computing inverse and multiplying.

This result holds for any programming language, S, MATLAB, c, Fortran,
etc.

b <- solve(A,x) vs b <- solve(A) %*% x 21

For example, the hat matrix can be calculated two ways in R.

H <- X %*% XtXinv %*% t(X)

H2 <- X %*% solve(t(X) %*% X, t(X))

The second approach is preferable as it eliminates a matrix multiplication.

In some cases you do want to calculate the inverse. One example is to get

V̂ar(β̂) = MSE(XTX)−1

which was calculated by MSE * XtXinv in the example code.

b <- solve(A,x) vs b <- solve(A) %*% x 22

