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Midterm Comments

1. Puffin nesting frequency

nestingi = β0 + β1grassi + β2soili + β3anglei + β4distancei + εi

(a) (5 points) The data from this study is available on the datasets page
in the file puffin.txt. Read in the data, calculate the standard
summary statistics (mean, standard deviation, and 5 figure summary)
for each of the variables and create a scatter plot matrix of the
data. Does it appear that any of the potential predictor variables are
associated with nesting frequency?
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> summary(puffin)
nesting grass soil angle

Min. : 0.000 Min. : 0.00 Min. :24.30 Min. : 2.00
1st Qu.: 0.000 1st Qu.:40.00 1st Qu.:32.75 1st Qu.: 7.25
Median : 7.500 Median :60.00 Median :37.40 Median :10.00
Mean : 7.684 Mean :56.45 Mean :37.72 Mean :15.00
3rd Qu.:12.750 3rd Qu.:80.00 3rd Qu.:42.83 3rd Qu.:21.25
Max. :25.000 Max. :95.00 Max. :51.40 Max. :38.00

distance
Min. : 3.00
1st Qu.:18.00
Median :30.00
Mean :30.39
3rd Qu.:44.25
Max. :60.00

> sapply(puffin, function(x) sqrt(var(x)))
nesting grass soil angle distance
7.192734 25.306443 6.653978 11.691993 16.581558

> sqrt(diag(var(puffin)))
nesting grass soil angle distance
7.192734 25.306443 6.653978 11.691993 16.581558
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plot(puffin) # splom(~puffin) is fine as well

It appears that angle and distance are associated with nesting
and possibly soil as well. Note that there are correlations between
some of the predictors, particularly between angle and distance.
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While not asked for, the correlation matrix for all the variables is

> cor(puffin)
nesting grass soil angle distance

nesting 1.00000000 0.15848477 0.02167879 0.83558202 -0.9078590
grass 0.15848477 1.00000000 0.06935884 -0.01735530 -0.2052506
soil 0.02167879 0.06935884 1.00000000 0.06579734 0.2116592
angle 0.83558202 -0.01735530 0.06579734 1.00000000 -0.8146941
distance -0.90785903 -0.20525060 0.21165916 -0.81469413 1.0000000

(b) (5 points) Run the linear regression model for the above model and
give the standard summaries (parameter estimates and standard errors,
ANOVA table, etc). What evidence is there that some of the variables
are useful in describing nesting frequency?

> puffin.lm <- lm(nesting ~ grass + soil + angle + distance, data=puffin)
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> summary(puffin.lm)
Call:
lm(formula = nesting ~ grass + soil + angle + distance, data = puffin)

Residuals:
Min 1Q Median 3Q Max

-4.0166 -2.1088 0.2293 1.2505 6.9881

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.117840 3.185028 3.177 0.00323 **
grass -0.007408 0.019459 -0.381 0.70586
soil 0.209211 0.077238 2.709 0.01062 *
angle 0.082389 0.077796 1.059 0.29727
distance -0.366571 0.057473 -6.378 3.18e-07 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 2.647 on 33 degrees of freedom
Multiple R-Squared: 0.8792, Adjusted R-squared: 0.8645
F-statistic: 60.03 on 4 and 33 DF, p-value: 1.113e-14

Midterm Comments 5



> anova(puffin.lm)
Analysis of Variance Table

Response: nesting
Df Sum Sq Mean Sq F value Pr(>F)

grass 1 48.08 48.08 6.8599 0.01321 *
soil 1 0.22 0.22 0.0313 0.86057
angle 1 1349.50 1349.50 192.5410 2.506e-15 ***
distance 1 285.12 285.12 40.6802 3.184e-07 ***
Residuals 33 231.29 7.01
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The clearest evidence is given by the F test from the summary output
which examines the hypotheses

H0 : β1 = β2 = β3 = β4 = 0

HA : at least one βi 6= 0, i = 1, . . . , 4
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F-statistic: 60.03 on 4 and 33 DF, p-value: 1.113e-14

which is highly significant. At least one of the predictors appears to
be useful in predicting nesting frequency. To determine the most likely
ones are distance and soil based on the t tests from the summary
output. After these two variables have been accounted for, the other
two variables don’t add much.

The F tests from the ANOVA table are not particularly useful in this
case as they do not give tests that we are interested in this case.
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Aside: Common Tests in Regression

For a regression model of the form

yi = β0 + β1x1i + β2x2i + . . . + βpxpi + εi

there are three common testing situations about the predictors

1. Testing all βs simultaneously:

H0 : β1 = β2 = . . . = βp = 0

HA : at least one βi 6= 0, i = 1, . . . , p

This is equivalent to comparing the models

Reduced Model(H0) : yi = β0 + εi

Full Model(HA) : yi = β0 + β1x1i + β2x2i + . . . + βpxpi + εi

Midterm Comments 8



2. Testing one β:

H0 : βj = 0

HA : βj 6= 0

This is equivalent to comparing the models (when j = 1)

Reduced Model(H0) : yi = β0 + β2x2i + . . . + βpxpi + εi

Full Model(HA) : yi = β0 + β1x1i + β2x2i + . . . + βpxpi + εi
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3. Testing a subset of the βs e.g.

H0 : β1 = β2 = 0

HA : β1 6= 0 or β2 6= 0

The alternative hypothesis corresponds to the three situations

1. β1 = 0, β2 6= 0, β3, . . . , βp arbitrary

2. β1 6= 0, β2 = 0, β3, . . . , βp arbitrary

3. β1 6= 0, β2 6= 0, β3, . . . , βp arbitrary

This is equivalent to comparing the models

Reduced Model(H0) : yi = β0 + β3x1i + . . . + βpxpi + εi

Full Model(HA) : yi = β0 + β1x1i + β2x2i + . . . + βpxpi + εi
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These situations can all be examined within the same framework. Let
SSE(m) be the error sum of squares for model m,

SSE(m) =
n∑

i=1

(yi − ŷi(m))2

where ŷi(m) is the fitted value for observation i under model m. Now
let df(m) be the error degrees of freedom for model m,

df(m) = n− k(m)

where k(m) is the number of predictors in model m.

The usual test statistic in all three cases is

F =
(SSE(R)− SSE(F ))/(df(R)− df(F ))

SSE(F )/df(F )

which is compared to and F distribution with df(R)−df(F ) and df(F )
degrees of freedom. The numerator degrees of freedom df(R)−df(F )
is the number of parameters given in H0.
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This is exactly what the S anova function does when given two lm
objects.

It is possible to show that in the case of testing a single β, the t given
in the summary output is equivalent to the F test as

t2 = F

and if t ∼ tdf , then F = t2 ∼ F1,df .

The output given by anova(puffin.lm) earlier doesn’t test what we
really want to do
> anova(puffin.lm)
Analysis of Variance Table
Response: nesting

Df Sum Sq Mean Sq F value Pr(>F)
grass 1 48.08 48.08 6.8599 0.01321 *
soil 1 0.22 0.22 0.0313 0.86057
angle 1 1349.50 1349.50 192.5410 2.506e-15 ***
distance 1 285.12 285.12 40.6802 3.184e-07 ***
Residuals 33 231.29 7.01
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What S does in this case examines the following sequence of models

1. grass

Df Sum Sq Mean Sq F value Pr(>F)
grass 1 48.08 48.08 6.8599 0.01321 *

Reduced Model(H0) : yi = β0 + εi

Full Model(HA) : yi = β0 + β1grassi + εi

2. soil

Df Sum Sq Mean Sq F value Pr(>F)
soil 1 0.22 0.22 0.0313 0.86057

Reduced Model(H0) : yi = β0 + β1grassi + εi

Full Model(HA) : yi = β0 + β1grassi + β2soiliεi
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3. angle

Df Sum Sq Mean Sq F value Pr(>F)
angle 1 1349.50 1349.50 192.5410 2.506e-15 ***

Reduced Model(H0) : yi = β0 + β1grassi + β2soili + εi

Full Model(HA) : yi = β0 + β1grassi + β2soili + β3anglei + εi

4. distance

Df Sum Sq Mean Sq F value Pr(>F)
distance 1 285.12 285.12 40.6802 3.184e-07 ***

Reduced Model(H0) : yi = β0 + β1grassi + β2soili + β3anglei + εi

Full Model(HA) : yi = β0 + β1grassi + β2soili + β3anglei

+β4distancei + εi
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So the order that the variables are entered into the model affects the
results given by anova unless Var(X) is a diagonal matrix, i.e.

Corr(Xi, Xj) = 0 for all pairs i & j

A partial justification of this can be seen by looking at the following
regressions

> puff.lm <- lm(nesting ~ distance, data=puffin)
> angle.lm <- lm(angle ~ distance, data=puffin)

> nestres <- resid(puff.lm)
> angleres <- resid(angle.lm)

> puffang.lm <- lm(nestres ~ angleres)
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> summary(puffang.lm)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.045e-17 4.557e-01 -4.49e-17 1.0000
angleres 1.755e-01 6.811e-02 2.577 0.0142 *

> puffboth.lm <- lm(nesting ~ distance + angle, data=puffin)
> summary(puffboth.lm)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 13.95582 2.44522 5.707 1.88e-06 ***
distance -0.29297 0.04871 -6.015 7.39e-07 ***
angle 0.17554 0.06908 2.541 0.0156 *
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> puffa.lm <- lm(nesting ~ angle, data=puffin)
> summary(puffa.lm)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.02635 1.06591 -0.025 0.98
angle 0.51404 0.05633 9.126 6.75e-11 ***

So in multiple regression, the parameter estimate you get for a single
predictor is the same as you get by regressing the residuals from a
model with other predictors with the residuals you get from trying to
predict the predictor of interest with the other predictors. (Sorry, I
know this looks ugly).

So the bottom line is that what you get out of a multiple regression
model for a variable, is what you get if you enter it last in a sequence
of single variable regression models.

End Aside
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(c) (5 points) Create the residual plot of the residuals against the fitted
values. In addition, in a single figure, plot the residuals against each
of the predictor variables. Do any of these figures suggest a problem
with the regression model?
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plot(fitted(puffin.lm), resid(puffin.lm), xlab="Fitted Values",
ylab="Residuals")
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Residuals vs Predictors
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attach(puffin)
postscript("../Assignments/puffinres.eps", horiz=F, width=8, height=6.5)
par(mfrow=c(2,2), oma=c(0,0,4,0))
plot(grass, resid(puffin.lm), xlab="Grass", ylab="Residuals")
plot(soil, resid(puffin.lm), xlab="Soil", ylab="Residuals")
plot(angle, resid(puffin.lm), xlab="Angle", ylab="Residuals")
plot(distance, resid(puffin.lm), xlab="Distance", ylab="Residuals")
mtext(side=3, line=0, cex=1.5, outer=T, "Residuals vs Predictors")

The plots of the residuals versus the predictors don’t show major
problems. One outlier is suggested, though with 40 observations, not
much to worry about, except for the fact that is it one the edge of the
predictor space (high angle, low distance, high soil).

The plot of residuals versus the fits shows one problem, the decreasing
line on the left of the plot. While it looks like curvature, that really
isn’t an accurate description of the problem. These are actually
observations having the same value for nesting, in this case 0. It
stands out in this case since it occurs with the minimum possible value
of nesting.
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(d) (5 points) Suppose that a new site was found where grass = 95,
soil = 25, angle = 5, and distance = 60. Predict the number of
nests for this site based on the original 38 sites. Any comments about
this prediction?

> newdata <- data.frame(grass=95, soil=25,
angle=5, distance=60)

> predict(puffin.lm,newdata)
[1] -6.938013

Since the nesting can’t be negative, this suggests a problem with the
model. In fact we probably should have fit a Poisson regression model
as the model fit allows for negative nesting values and the nesting
values are counts.
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(e) (5 points) Calculate the F test for comparing the model with all
four predictors in the model with the model having only soil and
distance in the model. What does this F test imply about the
predictors nesting?

This test examines the hypotheses

H0 : β1 = β3 = 0

HA : β1 6= 0 or β3 6= 0

> puffinred.lm <- lm(nesting ~ soil + distance, data=puffin)

> anova(puffinred.lm, puffin.lm)

Model 1: nesting ~ soil + distance
Model 2: nesting ~ grass + soil + angle + distance
Res.Df RSS Df Sum of Sq F Pr(>F)

1 35 244.869
2 33 231.293 2 13.576 0.9685 0.3902
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In this case the p-value is large, suggesting that grass and angle do
not add anything to the predictions after soil and distance have
been accounted for.

Midterm Comments 23



(f) (5 points) Now fit the model

nestingi = β0 + β1soili + β2distancei + β3soili × distancei + εi

Is there any evidence of an interaction between distance and soil on
the nesting frequency?
> puffinint.lm <- lm(nesting ~ soil * distance, data=puffin)

> summary(puffinint.lm)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.742393 5.679834 0.659 0.51440
soil 0.435530 0.148838 2.926 0.00608 **
distance -0.157837 0.178889 -0.882 0.38380
soil:distance -0.006575 0.004535 -1.450 0.15625
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> anova(puffinint.lm)
Analysis of Variance Table

Response: nesting
Df Sum Sq Mean Sq F value Pr(>F)

soil 1 0.90 0.90 0.1326 0.7180
distance 1 1668.44 1668.44 245.9860 <2e-16 ***
soil:distance 1 14.26 14.26 2.1022 0.1563
Residuals 34 230.61 6.78

The test on the interaction (either t or F is fine here) clearly isn’t
significant
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(g) (5 points) Now fit the model

nestingi = β0 + β1soili + β2distancei + β3soil2i + β4distance2
i + εi

Is there any evidence of a nonlinearity in the relationship of distance
or soil on the nesting frequency?

> puffinquad.lm <- lm(nesting ~ soil + distance + I(soil^2)
+ I(distance^2), data=puffin)

> summary(puffinquad.lm)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 16.220574 14.035610 1.156 0.256114
soil 0.024878 0.732079 0.034 0.973095
distance -0.495445 0.113372 -4.370 0.000116 ***
I(soil^2) 0.002714 0.009538 0.285 0.777772
I(distance^2) 0.001348 0.001826 0.738 0.465510
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> anova(puffinquad.lm)
Response: nesting

Df Sum Sq Mean Sq F value Pr(>F)
soil 1 0.90 0.90 0.1233 0.7277
distance 1 1668.44 1668.44 228.7155 <2e-16 ***
I(soil^2) 1 0.16 0.16 0.0223 0.8822
I(distance^2) 1 3.98 3.98 0.5452 0.4655
Residuals 33 240.73 7.29

Since both t tests on the quadratic terms are clearly not significant,
the linearity of the relationship seems ok. However a better test of
this (which agrees with the conclusion) is

> anova(puffinred.lm, puffinquad.lm)
Model 1: nesting ~ soil + distance Model 2: nesting ~ soil +
distance + I(soil^2) + I(distance^2)
Res.Df RSS Df Sum of Sq F Pr(>F)

1 35 244.87
2 33 240.73 2 4.14 0.2837 0.7548
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2. (30 points) The Ryan-Joiner test considers the following hypotheses

H0 :{x1, x2, . . . , xn} is a random sample from a normal population

HA :{x1, x2, . . . , xn} is not a random sample from a normal population

The test statistic is r, the correlation coefficient of the coordinate pairs,

(
Φ−1

(
i− 0.375
n + 0.25

)
, x(i)

)
, i = 1, . . . , n

of a normal Q-Q plot, where Φ−1(·) denotes the inverse CDF of a
standard normal RV and x(1) ≤ x(2) ≤ . . . ≤ x(n) are the ordered data
values. Under H0, r should be close to 1.
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(a) (5 points) For the dataset douglasfir.txt, available on the datasets
page for the course, calculate in R, the value of the statistic r described
above.

rjstat <- function(x) {
n <- length(x)
cor(qnorm(((1:n)-0.375)/(n+0.25)),sort(x))

}
>
> rjstat(douglasfir)
[1] 0.996571

(b) (5 points) Create the Q-Q plot (aka Normal Scores plot) for this
dataset.

The plot can be created by

qqnorm(douglasfir)
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(c) (5 points) The function qqline will add a straight line to Q-Q plots
created by either qqnorm or qqplot. This line is a description of the
main trend in the plot. By examining the code for qqline, what line
is added to the qqnorm plot (i.e. when datax = FALSE).
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> qqline
function (y, datax = FALSE, ...) {

y <- quantile(y[!is.na(y)], c(0.25, 0.75))
x <- qnorm(c(0.25, 0.75))
if (datax) {

slope <- diff(x)/diff(y)
int <- x[1] - slope * y[1]

}
else {

slope <- diff(y)/diff(x)
int <- y[1] - slope * x[1]

}
abline(int, slope, ...)

}

Let Q1 and Q3 be the sample quartiles of the dataset and z0.25 and
z0.75 be the population quartiles of the N(0, 1) distribution. Then
qqline draws the line through the points (z0.25, Q1) and (z0.75, Q3).
The slope of this line is an estimate of the standard deviation, though
different than the sample standard deviation s.
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(d) (10 points) Get p-value of test statistic by simulation

rjtest <- function(x, niter = 1000) {
n <- length(x)
r <- rjstat(douglasfir)
h0mat <- matrix(rnorm(n*niter), ncol=n)
rjh0 <- apply(h0mat, 1, rjstat)
pval <- mean(rjh0 <= r)
list(pval=pval, r=r, niter=niter)

}

> rjtest(douglasfir)
$pval [1] 0.934
$r [1] 0.996571
$niter [1] 1000

> rjtest(douglasfir,10000)
$pval [1] 0.9514
$r [1] 0.996571
$niter [1] 10000
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(e) (5 points) Based on the above analysis, is there any evidence to
suggest that the Douglas fir data is not normally distributed?

No. The Q-Q plot is very linear and the p-value from the Ryan-Joiner
test is large.

One comment about calculating the p-value. One way of thinking of
a p-value is

p-value = P[a test stat as or more extreme than observed |H0]

In this case, only small values of r should be considered extreme. rs
close to 1 are highly consistent with H0, so a “one-sided” p-value
should be calculated here, which is why

p̂ =
1
m

m∑

j=1

I(rj ≤ r)

was used.
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