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Personnel
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Office: 611 Science Center

Phone: 617-495-5617

E-mail: irwin@stat.harvard.edu

Web-site: <http://www.courses.fas.harvard.edu/∼stat149/>
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Teaching Fellow: Alan Lenarcic

E-mail: lenarcic@fas.harvard.edu

Section: To be determined
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Syllabus

• General Linear Model (Regression/ANOVA) review

• Generalized Linear Models

• Binary/Binomial responses - Logit & Probit regression

• Contingency tables - 2-, 3-, and higher-way tables

• Count data - Poisson regression

• Multicategory Logit models (Polychotomous logit and proportional odds
models)

• Inference and diagnostics
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Grading

• Homework (30%): 5 or 6 during the term.

• Final Project (10%): Analysis of data and writing a report.

• Midterm (25%): Tuesday, March 21st, in class (Tentative).

• Final (35%): Exam Group: 12, 13. This implies the exam date should
either be May 18th or May 24th.

Administration 4



Computing

The suggested package for the course will be R, a free implementation of
the S language which has Windows, Linux, and Macintosh implementations.
S-Plus, a commercial implementation from Insightful is also available in
Windows and Linux formats.

Online material about R/S-Plus is available via the Stat Computing link
on the course web site. Included on the S-Plus/R page are links to where
you can download R for your system.

You may use other statistic packages to do your assignments. However
you may not be able to get assistance from the TF or myself if you have
problems.

Computing 5



Motivating Example

Puffin Nesting: Based on the dataset from the
article ”Breeding Success of the Common Puffin on
Difference Habitats at Great Island, Newfoundland”

Four variables where considered in trying to describe
the nesting frequency of the common puffin in a
3m× 3m grid of plots.

• nesting: number of nests per 9m2

• grass: grass cover percentage

• soil: mean soil depth in cm

• angle: angle of slope in degrees

• distance: distance from cliff edge in m
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> summary(puffin)
nesting grass soil angle

Min. : 0.000 Min. : 0.00 Min. :24.30 Min. : 2.00
1st Qu.: 0.000 1st Qu.:40.00 1st Qu.:32.75 1st Qu.: 7.25
Median : 7.500 Median :60.00 Median :37.40 Median :10.00
Mean : 7.684 Mean :56.45 Mean :37.72 Mean :15.00
3rd Qu.:12.750 3rd Qu.:80.00 3rd Qu.:42.83 3rd Qu.:21.25
Max. :25.000 Max. :95.00 Max. :51.40 Max. :38.00

distance
Min. : 3.00
1st Qu.:18.00
Median :30.00
Mean :30.39
3rd Qu.:44.25
Max. :60.00
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It appears from the scatterplot matrix, that puffins prefer to nest closer
to the cliff edge, which tends to be more sloped. (Maybe its harder
for predators to get to nests in these locations). In addition is appears
that nesting tends to increase with increasing soil depth. Note that these
comments are tentative due to the correlation between the predictors.

> print(cor(puffin), digits=2)
nesting grass soil angle distance

nesting 1.000 0.158 0.022 0.836 -0.91
grass 0.158 1.000 0.069 -0.017 -0.21
soil 0.022 0.069 1.000 0.066 0.21
angle 0.836 -0.017 0.066 1.000 -0.81
distance -0.908 -0.205 0.212 -0.815 1.00

Lets fit the linear regression model where nesting is predicted by grass,
soil, angle, and distance.
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> summary(puffin.lm)

Call:
lm(formula = nesting ~ grass + soil + angle + distance,
data = puffin)

Residuals:
Min 1Q Median 3Q Max

-4.0166 -2.1088 0.2293 1.2505 6.9881

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.117840 3.185028 3.177 0.00323 **
grass -0.007408 0.019459 -0.381 0.70586
soil 0.209211 0.077238 2.709 0.01062 *
angle 0.082389 0.077796 1.059 0.29727
distance -0.366571 0.057473 -6.378 3.18e-07 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Residual standard error: 2.647 on 33 degrees of freedom
Multiple R-Squared: 0.8792, Adjusted R-squared: 0.8645
F-statistic: 60.03 on 4 and 33 DF, p-value: 1.113e-14

> anova(puffin.lm)
Analysis of Variance Table

Response: nesting
Df Sum Sq Mean Sq F value Pr(>F)

grass 1 48.08 48.08 6.8599 0.01321 *
soil 1 0.22 0.22 0.0313 0.86057
angle 1 1349.50 1349.50 192.5410 2.506e-15 ***
distance 1 285.12 285.12 40.6802 3.184e-07 ***
Residuals 33 231.29 7.01

Now lets look at some of the standard diagnostic plots.
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Residuals vs Predictors
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Generally these look ok, though maybe there is some slight evidence of
nonconstant variance. We probably don’t want to put much weight in this
as it could be driven by a couple of observations.
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This looks more problematic, particularly the straight line of points on the
left side of the plot.
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Lets ignore this and make forecasts at two possible nesting location
configurations.

grass soil angle distance ŷ

50 35 20 15 13.22

95 25 5 60 -6.94

> newdata <- data.frame(grass=c(50,95), soil=c(35,25),
angle=c(20,5), distance=c(15,60))

> predict(puffin.lm,newdata)
1 2

13.219018 -6.938013

So we can get impossible forecasts using linear regression.
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What model was actually being fit?

yi = β0 + β1x1i + . . . + β4x4i + εi; εi
iid∼ N(0, σ2)

yi|x1i, . . . , x4i
ind∼ N(µi, σ

2)

µ(yi|x1i, . . . , x4i) = β0 + β1x1i + . . . + β4x4i = µi

Var(yi|x1i, . . . , x4i) = σ2

So under this model, yi and µi can be any value, integer or non-integer,
non-negative or negative.
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What does the data look like?

Well the response variable here is a count variable, so

• yi ≥ 0 and must be an integer

• µi ≥ 0

So the normal linear regression model fit, can’t be right. However it’s
possible it could be a reasonable approximation (though there are problems
here).

Question: Can we find another modeling approach that satisfies the above
two conditions needed for this data set.

Answer: Yes. A Generalized Linear Model could be used. One possibility
is a Poisson regression model, which is an example of a generalized linear
model.
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Poisson Regression Model

yi|x1i, . . . , x4i
ind∼ Poisson(µi)

µ(yi|x1i, . . . , x4i) = exp(β0 + β1x1i + . . . + β4x4i) = µi

log µi = β0 + β1x1i + . . . + β4x4i (equivalently)

Var(yi|x1i, . . . , x4i) = µi

This model satisfies the two conditions, the responses must be non-negative
integers and the means are positive.

Lets look at some output from this model generated by R.
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> puffin.glm <- glm(nesting ~ grass + soil + angle + distance,
data=puffin, family=poisson())

> summary(puffin.glm)

Call:
glm(formula = nesting ~ grass + soil + angle + distance,

family = poisson(), data = puffin)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.3263 -1.2984 -0.6617 0.8119 2.5304
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Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.069973 0.452568 6.783 1.17e-11 ***
grass 0.005441 0.003104 1.753 0.07960 .
soil 0.033441 0.010822 3.090 0.00200 **
angle -0.030077 0.010724 -2.805 0.00504 **
distance -0.089399 0.010680 -8.371 < 2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 310.427 on 37 degrees of freedom
Residual deviance: 68.765 on 33 degrees of freedom
AIC: 183.38

Number of Fisher Scoring iterations: 6
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> anova(puffin.glm)
Analysis of Deviance Table

Model: poisson, link: log

Response: nesting

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev
NULL 37 310.427
grass 1 6.393 36 304.033
soil 1 0.033 35 304.000
angle 1 159.343 34 144.657
distance 1 75.892 33 68.765
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> predict(puffin.glm, newdata, type="response")
1 2

13.0648650 0.3357275

grass soil angle distance Normal ŷ Poisson µ̂

50 35 20 15 13.22 13.06

95 25 5 60 -6.94 0.34

Lets look at a couple of residual plots. Note that the residuals being
used are not standard residuals, but what are known as deviance residuals.
However the goal with these plots is the same. Are there any patterns in
the plots (hopefully not)?
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Not too bad. Note that the line effect is here again, as it must be given so
many observations with 0 nests. The following plots again don’t look too
bad
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Deviance Residuals vs Predictors
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Lets take a second look at the two models fit

• Normal model:

yi|x1i, . . . , x4i
ind∼ N(µi, σ

2)

µ(yi|x1i, . . . , x4i) = β0 + β1x1i + . . . + β4x4i = µi

Var(yi|x1i, . . . , x4i) = σ2

• Poisson model:

yi|x1i, . . . , x4i
ind∼ Poisson(µi)

µ(yi|x1i, . . . , x4i) = exp(β0 + β1x1i + . . . + β4x4i) = µi

log µi = β0 + β1x1i + . . . + β4x4i

Var(yi|x1i, . . . , x4i) = µi
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Differences:

• Additive vs Multiplicative models:

The normal regression model is an example of an additive model.
Changing x1 say by 1 leads to µ shifting by β1.

The Poisson regression model is an example of a multiplicative model.
Changing x1 say by 1 leads to µ being multiplied by eβ1.

As we will see during the term, the generalized linear model will allow
for both type of mean models to be used in a wide range of situations
(plus others)

• Variability

In the normal model, the residual variance can be anything (σ2 is
arbitrary). However in the Poisson case, the variance is fixed by the
mean.
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For the example, there is some evidence that this assumption
isn’t reasonable. Instead there is evidence of overdispersion where
Var(yi|x1i, . . . , x4i) > µi.

One approach is a quasi-likelihood approach where the following modeling
assumptions are made

µ(yi|x1i, . . . , x4i) = exp(β0 + β1x1i + . . . + β4x4i) = µi

log µi = β0 + β1x1i + . . . + β4x4i

Var(yi|x1i, . . . , x4i) = φµi; φ ≥ 1

If we fit this model to the data, an estimate of φ is 1.71.

> puffin.qglm <- glm(nesting ~ grass + soil + angle + distance,
data=puffin, family=quasipoisson())
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> summary(puffin.qglm)

Call:
glm(formula = nesting ~ grass + soil + angle + distance,

family = quasipoisson(), data = puffin)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.3263 -1.2984 -0.6617 0.8119 2.5304

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.069973 0.592049 5.185 1.07e-05 ***
grass 0.005441 0.004060 1.340 0.1894
soil 0.033441 0.014157 2.362 0.0242 *
angle -0.030077 0.014029 -2.144 0.0395 *
distance -0.089399 0.013971 -6.399 3.00e-07 ***

(Dispersion parameter for quasipoisson family taken to be 1.711)
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Null deviance: 310.427 on 37 degrees of freedom
Residual deviance: 68.765 on 33 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 6

By making this change to the model, our inference changes a bit. The
t-tests on the regression parameters are not as significant, though in this
case most people will make the same conclusion.
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