
Choosing Link Functions
Probit Regression
Model Selection

Statistics 149

Spring 2006

Copyright c©2006 by Mark E. Irwin

Fitting Generalized Linear Models in R

The base function for fitting GLIMs is glm

glm(formula, family = gaussian, data, weights, subset,
na.action, start = NULL, etastart, mustart,
offset, control = glm.control(...), model = TRUE,
method = "glm.fit", x = FALSE, y = TRUE,
contrasts = NULL, ...)

formula: a symbolic description of the model to be fit. The
structure is the same as for lm, i.e.

y ~ x1 + x2 + ... + xp

with conventions involving categorical factors and
interactions the same as in lm.

Fitting Generalized Linear Models in R 1

Normally y is a numeric variable. However for
’binomial’ models the response can also be specified
as a ’factor’ (when the first level denotes failure
and all others success) or as a two-column matrix with
the columns giving the numbers of successes
and failures.

family: a description of the error distribution and link
function to be used in the model. This can be a
character string naming a family function, a family
function or the result of a call to a family function.
(See ’family’ for details of family functions.)

Fitting Generalized Linear Models in R 2

The possible choices for family are (with default link):

binomial(link = "logit")
gaussian(link = "identity")
Gamma(link = "inverse")
inverse.gaussian(link = "1/mu^2")
poisson(link = "log")
quasi(link = "identity", variance = "constant")
quasibinomial(link = "logit")
quasipoisson(link = "log")

weights: an optional vector of weights to be used in the
fitting process.

subset: an optional vector specifying a subset of observations
to be used in the fitting process.

Fitting Generalized Linear Models in R 3

offset: this can be used to specify an _a priori_ known
component to be included in the linear predictor
during fitting.

So to fit a model with different link function, you need to link option to
family. For example, to do a Probit regression, run the command

fasten.logit.glm <- glm(fasten.res ~ fasten.load,
family=binomial()) # same as family=binomial(link="logit")

fasten.probit.glm <- glm(fasten.res ~ fasten.load,
family=binomial(link="probit"))

In this example fasten.res is a matrix with the first column being the
number of fasteners to fail for a particular load, and the second column
being the number of fasteners able to hold under the same load.

Fitting Generalized Linear Models in R 4

Choosing Link Function in Binomial Regression Models

As already mentioned, R has many possibilities for a link function in binomial
based regression. So one issue that may need to be considered is what
link function to use. Lets look at what happens in two examples (airplane
fasteners and birth weight) for the links

• logit: g(µ) = log µ
1−µ = logit(µ)

• probit: g(µ) = Φ−1(µ)

• cloglog (Complementary Log-Log link): g(µ) = log(− log(1− µ))

Choosing Link Function in Binomial Regression Models 5

2500 3000 3500 4000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Load (psi)

P
ro

po
rt

io
n

F
ai

lin
g

Logit
Probit
Complementary Log−Log

Choosing Link Function in Binomial Regression Models 6

15 20 25 30 35 40 45

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Maternal Age

Lo
w

 B
irt

h
W

ei
gh

t

Logit
Probit
Complementary Log−Log

Choosing Link Function in Binomial Regression Models 7

In both of these examples, the logit and probit links give similar fitted
probabilities, however the fits from the C-Log-Log link are a bit different.

Even though the fits may be similar, the estimated regression parameter
values can be quite different.

For the the birth weight example

Parameter Logit Probit C-Log-Log

β̂0 0.38458 0.23590 -0.02595

β̂1 -0.05115 -0.03155 -0.04185

One implication of this is that the interpretation of the parameters is
different with the three link functions. I’ll get back to this later.

Even though the meaning of the parameters is different, the tests on slope
type parameters is often similar, as can be seen in the example

Choosing Link Function in Binomial Regression Models 8

Call: glm(formula = low ~ age,
family = binomial(link = "logit"), data = birthwt)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.38458 0.73212 0.525 0.599
age -0.05115 0.03151 -1.623 0.105

Call: glm(formula = low ~ age,
family = binomial(link = "probit"), data = birthwt)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.23590 0.43981 0.536 0.5917
age -0.03155 0.01875 -1.682 0.0925 .

Choosing Link Function in Binomial Regression Models 9

Call: glm(formula = low ~ age,
family = binomial(link = "cloglog"), data = birthwt)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.02595 0.60755 -0.043 0.966
age -0.04185 0.02654 -1.577 0.115

The reason for the similarity in the results from logit and probit regressions
can be seen in the following plot.

This plot shows the relationship between π and g(π) for the three link
functions on a logit probability scale.

Choosing Link Function in Binomial Regression Models 10

The reason that logit and probit regression gave similar predicted probability
come from the fact that the probit curve is approximately linear in the
probability range 0.1 to 0.9 and the logit curve is linear (as it was constructed
to be).

Choosing Link Function in Binomial Regression Models 11

The difference in magnitude in β̂1 for logit and probit regression can be
seen by differences in g(π) − g(1 − π) or in g′(0.5) as the β1 is related to
this difference as

β1 ≈ ∆g

∆x

The differences of the C-Log-Log fits comes from two features. The first is
that this link function is less linear in the range 0.1 to 0.9 than the other
two links.

The second reason relates to ...

Choosing Link Function in Binomial Regression Models 12

Relationship Between Link Function and Counting
Successes or Failures

When collecting binomial data, we can either count the “successes” or the
“failures” as they give the same information. What happens in the analysis
if we switch what we are counting.

For the logit link,

logit(1− π) = log
1− π

π
= − log

π

1− π
= −logit(π)

This implies switching between counts of “successes” and counts of
“failures” switches the signs of the βs. For example, for the fastener
example

Relationship Between Link Function and Counting Successes or Failures 13

> summary(fasten.logit.rev.glm)

Call:
glm(formula = fasten.rev ~ fasten.load, family = binomial())

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.3397115 0.5456932 9.785 <2e-16 ***
fasten.load -0.0015484 0.0001575 -9.829 <2e-16 ***

> summary(fasten.logit.glm)

Call:
glm(formula = fasten.res ~ fasten.load, family = binomial())

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.3397115 0.5456932 -9.785 <2e-16 ***
fasten.load 0.0015484 0.0001575 9.829 <2e-16 ***

Relationship Between Link Function and Counting Successes or Failures 14

Probit regression has the same property

Φ−1(1− π) = −Φ−1(π)

So the βs will act the same here. In fact this is the case for a link function
based off a symmetric density function.

However for the C-Log-Log link

log(− log(1− π)) 6= − log(− log π)

So there is not a nice relationship between the βs for counting “successes”
and the βs for counting “failures”. Due to this asymmetry, the C-Log-Log
link is usually only used for problems when π is small.

I don’t think the C-Log-Log link is used much today, partly due to the
features mentioned, but also due to the fact that for small π

logit(π) ≈ log(− log(1− π))

Relationship Between Link Function and Counting Successes or Failures 15

Probit Regression

As we have seen, probit regression is based on the model

Φ−1(π) = Xβ

Lets consider the case with only a single predictor

Φ−1(π) = β0 + β1x

Unfortunately this probit regression model doesn’t a nice interpretation for
the regression parameters like logistic regression (changes in log odds for
changes in x). For levels of the predictor variable leading to moderate
probabilities (i.e. π ∈ (0.1, 0.9)), it can be shown that

β1 ≈ 1.6 log
ω(x + 1)

ω(x)

Probit Regression 16

However the true multiplier depends on π(x) and gets bigger the further
π(x) gets from 0.5.

When data is fit with logistic and probit regression the relationship between
the βs depends on the levels of the predictor variables. For example

Example Logistic Probit Ratio

Fastener 0.00154 0.00095 1.63

Birth Weight -0.05115 -0.03155 1.62

Since the two procedures give similar answer and logistic regression has nicer
interpretation of parameters, it is usually preferred to probit regression.

Probit Regression 17

Model Selection

As in linear regression, it can be useful to do model selection in generalized
linear models. As we are basing our estimation on the log likelihood
function, choosing our model based on a large log likelihood (or on a small
deviance) might seem to be a reasonable approach.

However as discussed earlier, when parameters get added to a model, the
log likelihood must go up (or the deviance must go down). So we need
to adjust are model selection criteria to take account of the number of
predictor variables in a prospective model and the amount of information
each predictor variable adds.

One approach is a penalized likelihood approach, similar to Mallow’s Cp for
linear regression models. The idea is to pick the model that minimizes

Deviance + Penalty(p)

where Penalty(p) is a penalty term which depends on p, the number of
parameters in the model of interest, including the intercept.

Model Selection 18

There are a number of common penalty terms, 2 of which I’ll discuss here

• Schwarz’s Bayesian Information Criterion (BIC)

BIC = Deviance + p log n

This approach, originally derived from Bayesian consideration looking at
posterior probabilities of model says pick the model with the smallest
value of BIC.

• Akaike’s Information Criterion (AIC)

AIC = Deviance + 2p

Similarly, this approach says to pick the model with the smallest value of
AIC

Model Selection 19

As can be easily seen BIC tends to penalize big models more than AIC,
as long as n > e2 = 7.4. What tends to happen is that AIC will tend
to pick models where the predictors choose should have at least moderate
influence, whereas BIC tends to include variables with strong influence.

Which to use can be a philosophical issue. In addition it can be problem
specific.

As this book discusses in section 12.4.2, we usually aren’t trying to find one
“best model”, but instead trying to find a set of reasonable models and
working with those.

In R, it is easiest to deal with AIC as this is given for almost every model
fit with glm. For example,

> birthwtall.glm <- glm(low ~ ., binomial, bwt)
> summary(birthwtall.glm)

Call:
glm(formula = low ~ ., family = binomial, data = bwt)

Model Selection 20

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.82302 1.24471 0.661 0.50848
age -0.03723 0.03870 -0.962 0.33602
lwt -0.01565 0.00708 -2.211 0.02705 *
raceblack 1.19241 0.53597 2.225 0.02609 *
raceother 0.74069 0.46174 1.604 0.10869
smokeTRUE 0.75553 0.42502 1.778 0.07546 .
ptdTRUE 1.34376 0.48062 2.796 0.00518 **
htTRUE 1.91317 0.72074 2.654 0.00794 **
uiTRUE 0.68019 0.46434 1.465 0.14296
ftv1 -0.43638 0.47939 -0.910 0.36268
ftv2+ 0.17901 0.45638 0.392 0.69488

Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 195.48 on 178 degrees of freedom
AIC: 217.48

Model Selection 21

It is possible to build a stepwise model selection procedure similar to
forward/backward/stepwise in linear regression.

This procedure has the advantage that is will easily deal with categorical
factors, which is problematic with stepwise procedures based on t/F -tests.
Also it can deal with interactions in a reasonable fashion, by requiring main
effects to be in a model when an interaction is.

• Forward AIC Selection: This procedure starts with no predictors in the
model and keeps adding predictors until the AIC stops decreasing. The
basic structure works as follow

1. Add each variable currently not in the model to the current model and
calculate the AIC.

2. Choose the variable that leads to the smallest AIC.
3. If the AIC of this model is lower that the AIC of the model not

containing the variable, add the variable and go back to step 1.
Otherwise, don’t add the variable and stop.

Model Selection 22

• Backward AIC Elimination: This procedure starts with all predictors in
the model and removes predictors until the AIC stops decreasing. The
basic structure is

1. Remove each variable currently in the model and calculate the AIC.
2. Choose the variable that leads to the model with the smallest AIC.
3. If the AIC of this model without this variable is lower that the AIC of

the model containing the variable, drop the variable and go back to
step 1. Otherwise, don’t drop the variable and stop.

• Stepwise AIC: This procedure combines features of both procedures where
variables can be added and removed from the model. The structure is
as follows

1. Given the current model, do one add step as described in forward AIC
selection.

2. Given the model after the forward step, do one drop step.
3. If any variables are added or dropped, go to step 1. Otherwise stop.

While any prospective model could be used as the starting model in this
procedure, it is often the null model with no predictors in it.

Model Selection 23

In R there is a function stepAIC which implements these ideas. Forward
selection could be done by the following example

> birthwtnull.glm <- glm(low ~ 1, family=binomial, data=bwt)
> birthwt.add.step <- stepAIC(birthwtnull.glm,

direction="forward",
scope=list(upper= ~ age + lwt + race + smoke + ptd + ht

+ ui + ftv, lower= ~ 1))

Start: AIC= 236.67
low ~ 1

Df Deviance AIC
+ ptd 1 221.90 225.90
+ lwt 1 228.69 232.69
+ ui 1 229.60 233.60
+ smoke 1 229.81 233.81
+ ht 1 230.65 234.65
+ race 2 229.66 235.66

Model Selection 24

+ age 1 231.91 235.91
<none> 234.67 236.67
+ ftv 2 232.09 238.09

Step: AIC= 225.9
low ~ ptd

Df Deviance AIC
+ age 1 217.30 223.30
+ lwt 1 217.50 223.50
+ ht 1 217.66 223.66
+ race 2 217.02 225.02
+ ui 1 219.12 225.12
+ smoke 1 219.33 225.33
+ ftv 2 217.88 225.88
<none> 221.90 225.90

Model Selection 25

Step: AIC= 223.3
low ~ ptd + age

Df Deviance AIC
+ ht 1 213.12 221.12
+ lwt 1 214.32 222.32
+ smoke 1 215.04 223.04
+ ui 1 215.13 223.13
<none> 217.30 223.30
+ race 2 213.97 223.97
+ ftv 2 214.63 224.63

Model Selection 26

Step: AIC= 221.12
low ~ ptd + age + ht

Df Deviance AIC
+ lwt 1 207.43 217.43
+ ui 1 210.13 220.13
+ smoke 1 210.89 220.89
<none> 213.12 221.12
+ race 2 210.06 222.06
+ ftv 2 210.38 222.38

Step: AIC= 217.43
low ~ ptd + age + ht + lwt

Df Deviance AIC
+ ui 1 205.15 217.15
+ smoke 1 205.39 217.39
<none> 207.43 217.43
+ race 2 203.77 217.77

Model Selection 27

+ ftv 2 204.33 218.33

Step: AIC= 217.15
low ~ ptd + age + ht + lwt + ui

Df Deviance AIC
<none> 205.15 217.15
+ smoke 1 203.24 217.24
+ race 2 201.25 217.25
+ ftv 2 202.41 218.41

Backward elimination can be handled similarly

> birthwtall.glm <- glm(low ~ ., binomial, bwt)
> birthwt.drop.step <- stepAIC(birthwtall.glm,

direction="backward",
scope=list(upper= ~ age + lwt + race + smoke + ptd + ht

+ ui + ftv, lower= ~ 1))

Model Selection 28

Start: AIC= 217.48
low ~ age + lwt + race + smoke + ptd + ht + ui + ftv

Df Deviance AIC
- ftv 2 196.83 214.83
- age 1 196.42 216.42
<none> 195.48 217.48
- ui 1 197.59 217.59
- smoke 1 198.67 218.67
- race 2 201.23 219.23
- lwt 1 200.95 220.95
- ht 1 202.93 222.93
- ptd 1 203.58 223.58

Model Selection 29

Step: AIC= 214.83
low ~ age + lwt + race + smoke + ptd + ht + ui

Df Deviance AIC
- age 1 197.85 213.85
<none> 196.83 214.83
- ui 1 199.15 215.15
- race 2 203.24 217.24
- smoke 1 201.25 217.25
- lwt 1 201.83 217.83
- ptd 1 203.95 219.95
- ht 1 204.01 220.01

Model Selection 30

Step: AIC= 213.85
low ~ lwt + race + smoke + ptd + ht + ui

Df Deviance AIC
<none> 197.85 213.85
- ui 1 200.48 214.48
- smoke 1 202.57 216.57
- race 2 205.47 217.47
- lwt 1 203.82 217.82
- ptd 1 204.22 218.22
- ht 1 205.16 219.16

For a full stepwise procedure, the following is an example. Note that R
implements this procedure slightly differently than described earlier.

> birthwtnull.glm <- glm(low ~ 1, family=binomial, data=bwt)
> birthwt.step.step <- stepAIC(birthwtnull.glm,

direction="both",
scope=list(upper= ~ age + lwt + race + smoke + ptd + ht

+ ui + ftv, lower= ~ 1))

Model Selection 31

Start: AIC= 236.67
low ~ 1

Df Deviance AIC
+ ptd 1 221.90 225.90
+ lwt 1 228.69 232.69
+ ui 1 229.60 233.60
+ smoke 1 229.81 233.81
+ ht 1 230.65 234.65
+ race 2 229.66 235.66
+ age 1 231.91 235.91
<none> 234.67 236.67
+ ftv 2 232.09 238.09

Model Selection 32

Step: AIC= 225.9
low ~ ptd

Df Deviance AIC
+ age 1 217.30 223.30
+ lwt 1 217.50 223.50
+ ht 1 217.66 223.66
+ race 2 217.02 225.02
+ ui 1 219.12 225.12
+ smoke 1 219.33 225.33
+ ftv 2 217.88 225.88
<none> 221.90 225.90
- ptd 1 234.67 236.67

Model Selection 33

Step: AIC= 223.3
low ~ ptd + age

Df Deviance AIC
+ ht 1 213.12 221.12
+ lwt 1 214.32 222.32
+ smoke 1 215.04 223.04
+ ui 1 215.13 223.13
<none> 217.30 223.30
+ race 2 213.97 223.97
+ ftv 2 214.63 224.63
- age 1 221.90 225.90
- ptd 1 231.91 235.91

Model Selection 34

Step: AIC= 221.12
low ~ ptd + age + ht

Df Deviance AIC
+ lwt 1 207.43 217.43
+ ui 1 210.13 220.13
+ smoke 1 210.89 220.89
<none> 213.12 221.12
+ race 2 210.06 222.06
+ ftv 2 210.38 222.38
- ht 1 217.30 223.30
- age 1 217.66 223.66
- ptd 1 227.93 233.93

Model Selection 35

Step: AIC= 217.43
low ~ ptd + age + ht + lwt

Df Deviance AIC
+ ui 1 205.15 217.15
+ smoke 1 205.39 217.39
<none> 207.43 217.43
+ race 2 203.77 217.77
- age 1 210.12 218.12
+ ftv 2 204.33 218.33
- lwt 1 213.12 221.12
- ht 1 214.32 222.32
- ptd 1 219.88 227.88

Model Selection 36

Step: AIC= 217.15
low ~ ptd + age + ht + lwt + ui

Df Deviance AIC
<none> 205.15 217.15
+ smoke 1 203.24 217.24
+ race 2 201.25 217.25
- ui 1 207.43 217.43
- age 1 207.51 217.51
+ ftv 2 202.41 218.41
- lwt 1 210.13 220.13
- ht 1 212.70 222.70
- ptd 1 215.48 225.48

For the stepwise procedure, different starting models can lead to different
final models. For example, starting with all predictors in the model the final
model is

Model Selection 37

Step: AIC= 213.85
low ~ lwt + race + smoke + ptd + ht + ui

Df Deviance AIC
<none> 197.85 213.85
- ui 1 200.48 214.48
+ age 1 196.83 214.83
+ ftv 2 196.42 216.42
- smoke 1 202.57 216.57
- race 2 205.47 217.47
- lwt 1 203.82 217.82
- ptd 1 204.22 218.22
- ht 1 205.16 219.16

Starting Model Final Model AIC

None In low ~ ptd + ht + lwt + ui + age 217.15

All In low ~ ptd + ht + lwt + ui + race + smoke 213.85

Model Selection 38

The function stepAIC can handle different penalty functions. Thus by
adding the option k = log(n), BIC can be used as well

> birthwt.BIC.step <- stepAIC(birthwtnull.glm, k=log(189)
direction="both",
scope=list(upper= ~ age + lwt + race + smoke + ptd + ht

+ ui + ftv, lower= ~ 1))

Start: AIC= 239.91
low ~ 1

Df Deviance AIC
+ ptd 1 221.90 232.38
+ lwt 1 228.69 239.17
<none> 234.67 239.91
+ ui 1 229.60 240.08
+ smoke 1 229.81 240.29
+ ht 1 230.65 241.13
+ age 1 231.91 242.40

Model Selection 39

+ race 2 229.66 245.39
+ ftv 2 232.09 247.81

Step: AIC= 232.38
low ~ ptd

Df Deviance AIC
<none> 221.90 232.38
+ age 1 217.30 233.02
+ lwt 1 217.50 233.22
+ ht 1 217.66 233.39
+ ui 1 219.12 234.85
+ smoke 1 219.33 235.05
+ race 2 217.02 237.99
+ ftv 2 217.88 238.85
- ptd 1 234.67 239.91

Model Selection 40

Starting Final Model Approach Criteria

None In ptd + ht + lwt + ui + age Forward AIC

All In ptd + ht + lwt + ui + race + smoke Backward AIC

None In ptd + ht + lwt + ui + age Stepwise AIC

All In ptd + ht + lwt + ui + race + smoke Stepwise AIC

None In ptd Stepwise BIC

All In ptd + ht + lwt Stepwise BIC

Model Selection 41

