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Logistic Regression for Binomial Responses

So far we’ve mainly focused on the case, from a theory point of view, on
binary (Bernoulli trials) responses, not Binomial responses, i.e. looked at

Yi
ind∼ Bin(1, π(Xi))

not
Yi

ind∼ Bin(mi, π(Xi)); mi ≥ 1

When discussing examples based on binomial sampling (mi > 1), I’ve
treated each of the mi responses separately. While not justifying it yet, it
is a valid thing to do.

So for observation Yi, let Zij, j = 1, . . . , mi be the individual trials such
that

Yi =
mi∑

j=1

Zij
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The likelihood based on the Zij is

L(π|Z) =
n∏

i=1

mi∏

j=1

π
Zij

i (1− πi)1−Zij

=
n∏

i=1

πYi
i (1− πi)mi−Yi

The likelihood based on the the Yis is

L(π|Y) =
n∏

i=1

(
mi

Yi

)
πYi

i (1− πi)mi−Yi

= C(Y)
n∏

i=1

πYi
i (1− πi)mi−Yi

= C(Y)L(π|Z)
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So the only difference in the likelihoods is the normalizing constant, which
doesn’t affect the maximization with respect to β.

One difference that does occur with mi > 1 is that model assessment is
easier.

It is possible to check for things like

• Goodness of Fit

• Outliers

• Influential Points
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Model Assessment

When mi > 0, p̂i = Yi
mi

is an unbiased estimate of πi = π(Xi). So we can
use these to help check the model.

Earlier we saw plots of p̂ vs xi and saw the S shaped relationship. However
this really doesn’t show whether

logit(π(xi)) = β0 + β1xi

is a reasonable model. One thing we can do instead is to plot logit(p̂i) vs
xi and check to see if this is approximately linear. For example, for the
fastener and pop bottle deposit examples,
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Note that this idea can be used for any link function. For example, if you
were doing a probit regression, plot Φ−1(p̂i) vs xi and check for linearity.
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Note it is hard to differentiate between logistic and probit regression here.
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Similarly for Cauchit regression, plot F−1(p̂i) vs xi.
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where
F−1(u) = tan(π(µ− 1/2))
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Note that there can be a slight problem with this approach. Suppose that
mi is small and that Yi = 0. In this case p̂i = 0 and logit(0) = −∞, so
this would be a bit difficult to plot.

Of course you get a similar problem when Yi = mi.

One solution is to tweak the data slightly for the plot. One idea is to add
a small constant to the number of successes and number of failures in each
observation. A common choice is to use 0.5, which gives

l̂ogiti = log
Yi + 0.5

mi − Yi + 0.5

This tends to shrink the empirical logits a bit towards 0, with more shrinkage
occurring with the smaller sample sizes.

Note that this adjustment is only done for exploratory plotting, and not
fitting the data. Maximum likelihood has no problem with Yi = 0 or mi.
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Residual Analysis

As with linear regression, trying to find problems with plots of logit(p̂i) vs
xi can be difficult. As in linear regression, residual plots tend to be more
useful.

The question is, what should we use for residuals. There are two common
choices in binomial regression

• Deviance Residual

Dresi = sign(Yi −miπ̂i)

√
2

{
Yi log

Yi

miπ̂i
+ (mi − Yi) log

mi − Yi

mi(1− π̂i)

}

One motivation for these is the Deviance Goodness-of-Fit test (to be
discussed later). These are also the residuals returned in R with the
command resid(glmobject).
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• Pearson Residual

Presi =
Yi −miπ̂i√
miπ̂i(1− π̂i)

These have a nice interpretation as

Observed− Expected

SE

So you can think of these like standardized residuals in linear regression.

For both type of residuals, if the model is correct, they act like they are
draws from a N(0, 1) distribution, assuming that the mis aren’t too small.

Thus they can be used to check for problems with the choice of mean
function and for outliers.
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Everything seems to look nice here.
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So it looks like there is one outlier here.
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Looks like there may be some curvature here. Lets try fitting a quadratic.

Residual Analysis 15



5 10 15 20

−
2

−
1

0
1

Quadratic − Deviance Residuals

x

D
ev

ia
nc

e 
R

es
id

ua
l

5 10 15 20

−
2

−
1

0
1

Quadratic − Pearson Residuals

x
P

ea
rs

on
 R

es
id

ua
l

The residuals look much better here.
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> ysim2.glm <- glm(ymat ~ x + I(x^2), family=binomial())
> summary(ysim2.glm)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.9038 -0.7555 0.3351 0.7157 1.7468

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.951140 0.240452 -3.956 7.63e-05 ***
x -0.006128 0.055554 -0.110 0.912168
I(x^2) 0.009899 0.002796 3.540 0.000399 ***
---

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 265.391 on 19 degrees of freedom
Residual deviance: 20.766 on 17 degrees of freedom
AIC: 106.21
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Goodness of Fit Tests

One thing that would be nice is to get more evidence on whether a model
actually fits the data that just what we can get from the residual analysis.
When the mi aren’t too small, there are a couple of tests that we can do
to examine this.

• Deviance Goodness-of-Fit Test

What we really are interested in examining is the null hypothesis

H0 : logit(πi) = β0 + β1xi1 + . . . + βp−1xi,p−1

In this null hypothesis some of the βs could be 0. We just don’t want
missing terms, such as a missing predictor or an x2

j type term.

One possible alternative to compare this null with is

HA : logit(πi) = αi (i = 1, . . . , n, with n different parameters)
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This model is sometimes referred to as the saturated model.

As these are nested models, we can do a drop of deviance test to
see whether there is evidence that the hypothesized logistic model is
adequate or not.

Under H0,

log L(β̂) = C +
n∑

i=1

Yi log π̂i + (mi − Yi) log(1− π̂i)

and under HA,

log L(α̂) = C +
n∑

i=1

Yi log p̂i + (mi − Yi) log(1− p̂i)
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So the drop in deviance test statistic is

X2 = −2(log L(β̂)− log L(α̂))

= −2
n∑

i=1

{(Yi log π̂i + (mi − Yi) log(1− π̂i))

− (Yi log p̂i + (mi − Yi) log(1− p̂i))}

= 2
n∑

i=1

Yi log
p̂i

π̂i
+ (mi − Yi) log

1− p̂i

1− π̂i

= 2
n∑

i=1

Yi log
Yi

miπ̂i
+ (mi − Yi) log

mi − Yi

mi −miπ̂i

This is compared to a χ2
n−p distribution.

Note that this is sometimes referred to as the likelihood ratio goodness-
of-fit test since it is a likelihood ratio test.
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This statistics has a tie with the deviance residuals as

X2 =
n∑

i=1

Dres2
i

This test is easily conducted in R. The line for Residual Deviance in the
summary(glmobject) gives information for this statistic.

For the example examined today

> summary(fasten.logit.glm)

Null deviance: 112.83207 on 9 degrees of freedom
Residual deviance: 0.37192 on 8 degrees of freedom

> pchisq(deviance(fasten.logit.glm),
df.residual(fasten.logit.glm), lower.tail=F)

[1] 0.999957
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> summary(deposit.glm)

Null deviance: 1108.171 on 5 degrees of freedom
Residual deviance: 12.181 on 4 degrees of freedom

> pchisq(deviance(deposit.glm), df.residual(deposit.glm),
lower.tail=F)

[1] 0.01605229

> summary(ysim.glm)

Null deviance: 265.391 on 19 degrees of freedom
Residual deviance: 33.822 on 18 degrees of freedom

> pchisq(deviance(ysim.glm), df.residual(ysim.glm),
lower.tail=F)

[1] 0.01324954
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> summary(ysim2.glm)

Null deviance: 265.391 on 19 degrees of freedom
Residual deviance: 20.766 on 17 degrees of freedom

> pchisq(deviance(ysim2.glm), df.residual(ysim2.glm),
lower.tail=F)

[1] 0.2369435

Note that you can have significant parameters in models that don’t fit.
For example, the quadratic example when only a linear term is fit, showed
significant lack of fit. However the linear term was still significant.
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> anova(ysim.glm, test="Chisq")
Analysis of Deviance Table

Model: binomial, link: logit

Response: ymat

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 19 265.391
x 1 231.569 18 33.822 2.711e-52

In this case, the linear term described much of the variability in the
counts, but there was still some left to be explained by the quadratic
term.
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> anova(ysim2.glm, test="Chisq")
Analysis of Deviance Table

Model: binomial, link: logit

Response: ymat

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 19 265.391
x 1 231.569 18 33.822 2.711e-52
I(x^2) 1 13.056 17 20.766 3.023e-04

Note that it is possible to have a model that doesn’t show significant
lack of fit, but can still have new variables added to the model that show
statistical significant.
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There is another way to think of this test. Consider the 2 ×n table of
observed counts

Y1 Y2 · · · Yn−1 Yn

m1 − Y1 m2 − Y2 · · · mn−1 − Yn−1 mn − Yn

m1 m2 · · · mn−1 mn

and the corresponding table of expected counts, where the expected
counts come from the logistic regression model

m1π̂1 m2π̂2 · · · mn−1π̂n−1 mnπ̂n

m1 −m1π̂1 m2 −m2π̂2 · · · mn−1 −mn−1π̂n−1 mn −mnπ̂n

m1 m2 · · · mn−1 mn
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So we can consider this Goodness-of-Fit test as comparing the observed
counts with the expected counts with the statistic

X2 =
∑

all cells

2Oi log
Oi

Ei

• Pearson Goodness-of-Fit Test

A common way of examining goodness of fit is with a Pearson Chi-square
test. We can do the same thing here.

Working with the same observed and expected table, Pearson’s Chi-
square test has the form

X2
p =

∑

all cells

(Oi − Ei)2

Ei

This statistic is also compared to a χ2
n−p distribution.
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As with the Deviance Goodness-of-Fit test, this statistic can be tied
residuals, Pearson residuals in this case as

X2
p =

n∑

i=1

Pres2
i

Usually the test statistics give similar results. For the four examples
considered

Test Fastener Deposit Simulated - Linear Simulated - Quadratic

X2 0.372 12.19 33.82 20.77

X2
p 0.371 12.29 31.18 20.35
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Note that both of these tests require that the mi to be large.

To exhibit what can happen in this case, lets consider the situation where

Yi
iid∼ Bin(1, π).

In this case π̂ = ȳ giving

X2
p =

∑ (Yi − ȳ)2

ȳ(1− ȳ)
= n

and
X2 = −2n {ȳ log ȳ + (1− ȳ) log(1− ȳ)}

In the first case the distribution is degenerate and in the second it strongly
depends on π̂. For these to be valid goodness of fit tests, we need that
the distribution not to depend on the parameter estimates (at least not
strongly). This will be the case if the mi are big.
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