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Poisson Regression Model

Puffin Nesting: Based on the dataset from the
article ”Breeding Success of the Common Puffin on
Difference Habitats at Great Island, Newfoundland”

Four variables where considered in trying to describe
the nesting frequency of the common puffin in a
3m× 3m grid of plots.

• nesting: number of nests per 9m2

• grass: grass cover percentage

• soil: mean soil depth in cm

• angle: angle of slope in degrees

• distance: distance from cliff edge in m

Poisson Regression Model 1



nesting

0 20 40 60 80 5 15 25 35

0
5

15
25

0
20

60 grass

soil

25
35

45

5
15

25
35

angle

0 5 10 15 20 25 25 35 45 10 30 50

10
30

50

distance

Poisson Regression Model 2



Poisson Regression Model

• Distribution: yi|x1i, . . . , xpi
ind∼ Poisson(µi)

• Link function: g(µi) = β0 + β1x1i + . . . + βpxpi

The common choices for the link function are

– log: g(µ) = log µ
This is the canonical link and leads to the multiplicative model as

µ(x + 1) = eβ0+β1(x+1) = eβ0+β1eβ1

For many datasets involving count data, this multiplicative model is
reasonable and this happens to be the most popular link function.

– identity: g(µ) = µ
The link function is usually only useful when y is bounded away from
0 over the range of interest for the predictor variables as Xβ can
go negative, which isn’t compatible with the Poisson (or any count
distribution).
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– sqrt (Square root): g(µ) =
√

µ
This is an analog to the variance stabilizing transformation which has
been used in the past. By the delta rule, if Var(Y |X) = E[Y |X] =
µ(X),

Var(
√

Y |X) ≈ 1
4

Note that for the the log and sqrt link functions, additive models on
the linear predictor scale lead to interactions on the mean scale.

For the log link,
µ(x1, x2) = eβ0eβ1x1eβ2x2

In this case the effect of x1 depends on the level of x2 (and vice-versa).

Similarly, for the sqrt link

µ(x1, x2) = β2
0 + 2β0β1x1 + 2β0β2x2 + +2β1β1x1x2 + β2

1x
2
1 + β2

2x
2
2

• Variance function: V (µi) = µi
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As we have seen before, this data can easily analyzed by

> puffin.glm <- glm(nesting ~ grass + soil + angle + distance,
data=puffin, family=poisson())

> summary(puffin.glm)

Call:
glm(formula = nesting ~ grass + soil + angle + distance,

family = poisson(), data = puffin)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.3263 -1.2984 -0.6617 0.8119 2.5304
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Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.069973 0.452568 6.783 1.17e-11 ***
grass 0.005441 0.003104 1.753 0.07960 .
soil 0.033441 0.010822 3.090 0.00200 **
angle -0.030077 0.010724 -2.805 0.00504 **
distance -0.089399 0.010680 -8.371 < 2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 310.427 on 37 degrees of freedom
Residual deviance: 68.765 on 33 degrees of freedom
AIC: 183.38

Number of Fisher Scoring iterations: 6
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> anova(puffin.glm)
Analysis of Deviance Table

Model: poisson, link: log

Response: nesting

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev
NULL 37 310.427
grass 1 6.393 36 304.033
soil 1 0.033 35 304.000
angle 1 159.343 34 144.657
distance 1 75.892 33 68.765
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Inference in Poisson Regression

As with logistic regression, inference can be based on Wald procedures for
confidence intervals and tests on single βs and Likelihood Ratio drop in
deviance tests on one or more parameters.

For example, an approximate confidence interval for βj is

β̂j ± z∗α/2SE(β̂j) = (L,U)

A confidence interval for eβj is given by

(eL, eU)
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For example, for the effect of distance, 95% confidence intervals for β4

and eβ4 are

> betahat <- coef(puffin.glm)[5]
> se <- sqrt(vcov(puffin.glm)[5,5])
> cibeta <- c(betahat-qnorm(0.975)*se, betahat+qnorm(0.975)*se)
> betahat

distance
-0.08939925
> cibeta

distance distance
-0.11033098 -0.06846753
> exp(betahat)
distance
0.9144804
> exp(cibeta)
distance distance
0.8955377 0.9338238
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In addition, we can get confidence intervals for mean responses by a similar
approach. The usual estimate of the mean response with predictor vector
X is

µ̂(X) = g−1(Xβ̂)

So for the log link, this is

µ̂(X) = eXβ̂

A confidence interval for g(µ(X)) is

Xβ̂ ± z∗α/2

√
XV̂ar(β̂)XT = (L,U)

which is then transformed

(g−1(L), g−1(U))

to give a confidence interval for µ(X).
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The basic components can be calculated in R with the predict function,
using the type="link" option.

For independent observations, the log-likelihood is

l(β) =
n∑

i=1

yi log µi − µi − log yi!

This gives a deviance for Poisson regression of

G2 = 2
n∑

i=1

yi log
yi

µ̂i
− yi + µ̂i

(This is set so the saturated model has a deviance of 0.)
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Two models can be compared with the test statistic

X2 = G2(Reduced Model)−G2(Full Model)

which is compared to a χ2
df distribution where df is the difference in the

number of parameters between the 2 models.

For example, lets examine the effect of grass and soil on the number of
nests

> anova(puffin2.glm, puffin.glm, test="Chisq")
Analysis of Deviance Table

Model 1: nesting ~ angle + distance
Model 2: nesting ~ grass + soil + angle + distance
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 35 85.050
2 33 68.765 2 16.285 0.0002909
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As in Logistic regression, the Wald and Drop in Deviance tests aren’t the
same when a single β is examined.

> anova(puffin3.glm, puffin.glm, test="Chisq")
Analysis of Deviance Table

Model 1: nesting ~ soil + angle + distance
Model 2: nesting ~ grass + soil + angle + distance
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 34 71.888
2 33 68.765 1 3.123 0.077
> summary(puffin.glm)
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.069973 0.452568 6.783 1.17e-11 ***
grass 0.005441 0.003104 1.753 0.07960 .
soil 0.033441 0.010822 3.090 0.00200 **
angle -0.030077 0.010724 -2.805 0.00504 **
distance -0.089399 0.010680 -8.371 < 2e-16 ***

Inference in Poisson Regression 13



Model Diagnostics

To examine the fit of the model, similar approaches are taken as in logistic
regression. As before, there are two types of residuals used

• Deviance residual

Dresi = sign(Yi − µ̂i)

√
2

[
yi log

yi

µ̂i
− yi + µ̂i

]

Note that the form of residual changes as deviance residuals depend on
the form of the log likelihood.

As before these can be calculated in R by resid(glm.object).
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• Pearson residuals

Presi =
Yi − µ̂i√

µ̂i

This is of a similar form as seen before, except for the change in the
form of Var(Yi) that occurs in the denominator.

Note that it ends up that these can be easily gotten in R
by resid(glm.object, type="pearson"). This works for any
generalized model, including logistic regression.

While usually not useful here, it is also possible to get the raw residuals
yi− µ̂i in R with the command resid(glm.object, type="response").
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These look pretty good. There is one observation that stands out, with
a Pearson residual of 3. Interestingly, it doesn’t stand out strongly in the
scatterplot matrix

> cbind(puffin,pear.resid, dev.resid, fitted(puffin.glm))[24,]
nesting grass soil angle distance pear.resid dev.resid

24 11 20 30.8 9 27 2.990383 2.530391
fitted(puffin.glm)

24 4.591954

If the underlying µi are large, both the deviance and Pearson residuals are
approximately N(0, 1) distributed. However if many of the µ̂i < 5, the
usual normal based cutoffs are questionable.

Not surprisingly, it is also possible to perform Goodness of Fit tests for
Poisson data.
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• Deviance Goodness of Fit test:

X2 = 2
n∑

i=1

yi log
yi

µ̂i
− yi + µ̂i

=
n∑

i=1

Dres2
i = G2

This is compared to a χ2
n−p distribution.

The information for this test is given in the summary of the glm. For the
example,

> summary(puffin.glm)

Null deviance: 310.427 on 37 degrees of freedom
Residual deviance: 68.765 on 33 degrees of freedom

Inference in Poisson Regression 19



> pchisq(deviance(puffin.glm), df.residual(puffin.glm),
lower.tail=F)

[1] 0.0002572599

• Pearson Goodness of Fit test:

X2
p =

n∑

i=1

(Yi − µ̂i)2

µ̂i

=
n∑

i=1

Pres2
i

Similarly, it is also compared to a χ2
n−p distribution.

> pchisq(sum(pear.resid^2), df.residual(puffin.glm),
lower.tail=F)

[1] 0.006662672
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Small p-values for these tests can be caused by many things, including

• Incorrect mean model, e.g. missing predictors

• Poisson model is wrong. For example, maybe Var(Y |X) > µ(Y |X).

• Outliers contaminating the data

As with binomial data, these tests break down if there many observations
with small Poisson means (e.g. µ̂i < 5).

In cases like this, such as the example, other tools for examining the fit,
such as testing extra terms (e.g. βx2), should be used.
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It is also possible to examine for influence using similar approaches as before.
For this example, not much stands out, except for one observation that has

large leverage
(
> 3

√
p

n−p

)
.

dfb.1 dfb.gr dfb.so dfb.ang dfb.dst dffit cov.r cook.d hat
5 0.068 -0.192 0.253 -0.2490 -0.1667 0.332 2.19 2.3e-02 0.478

> cbind(puffin,pear.resid, dev.resid, fitted(puffin.glm))[5,]
nesting grass soil angle distance pear.resid dev.resid

5 11 40 47.6 6 27 0.3740736 0.3669813
fitted(puffin.glm)

5 9.827332
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Offsets

Often with count data, the expected counts will depend on an observation
time, or an observation area. The idea being, if you observe for twice as
long, you expect the count to double. So often the mean model will look
like

µi = ti × ri

where ti is observation time (or equivalent) and ri is the rate (expected
count per observation unit).

The log-linear model works well in this situation as

log µi = log(tiri)

= log ti + log ri

= log ti + β0 + β1xi1 + . . . + βpxip

The quantity log ti is often referred to as the offset.
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Wave Damage to Cargo Ships: Data was collected by Lloyd’s Register of
Shipping investigating the damage caused by waves to the forward section
of certain cargo-carrying vessels. Three factors are believed to affect the
number of damage incidents

• Ship type: A - E

• Year of construction: 1960-64, 1965-69, 1970-74, 1975-1979

• Period of operation: 1960-74, 1975-1979

The observation times varied greatly (45 to 44882 months) and thus must
be taken account of in the analysis. For example
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Ship Year of Period of Aggregate Damage Damage Rate

Type Construction Operation Service Time Damage (per 1000 months)

B 1960-64 1960-74 44882 39 0.869

B 1960-64 1975-79 17176 29 1.688

B 1965-69 1960-74 28609 58 2.027

B 1965-69 1975-79 20370 53 2.602
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Lets examining the model

log µ = β0 + β1Type + β2Construct + β3Operation + log Service

This can be done in R by using the offset option to glm.

> wave.glm <- glm(Damage ~ Type + Construct + Operation,
offset=log(Service), data=wave2, family=poisson())

> summary(wave.glm)

Call:
glm(formula = Damage ~ Type + Construct + Operation,

family = poisson(), data = wave2, offset = log(Service))

Deviance Residuals:
Min 1Q Median 3Q Max

-1.6768 -0.8293 -0.4370 0.5058 2.7912
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Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.40590 0.21744 -29.460 < 2e-16 ***
TypeB -0.54334 0.17759 -3.060 0.00222 **
TypeC -0.68740 0.32904 -2.089 0.03670 *
TypeD -0.07596 0.29058 -0.261 0.79377
TypeE 0.32558 0.23588 1.380 0.16750
Construct1965-69 0.69714 0.14964 4.659 3.18e-06 ***
Construct1970-74 0.81843 0.16977 4.821 1.43e-06 ***
Construct1975-79 0.45343 0.23317 1.945 0.05182 .
Operation1975-79 0.38447 0.11827 3.251 0.00115 **
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 146.328 on 33 degrees of freedom
Residual deviance: 38.695 on 25 degrees of freedom
AIC: 154.56
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In this example, all three factors seem to be important as

> anova(wave.t.glm, wave.glm, test="Chisq")
Analysis of Deviance Table

Model 1: Damage ~ Construct + Operation
Model 2: Damage ~ Type + Construct + Operation
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 29 62.365
2 25 38.695 4 23.670 9.3e-05

> anova(wave.c.glm, wave.glm, test="Chisq")
Analysis of Deviance Table

Model 1: Damage ~ Type + Operation
Model 2: Damage ~ Type + Construct + Operation
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 28 70.103
2 25 38.695 3 31.408 6.975e-07
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> anova(wave.o.glm, wave.glm, test="Chisq")
Analysis of Deviance Table

Model 1: Damage ~ Type + Construct
Model 2: Damage ~ Type + Construct + Operation
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 26 49.355
2 25 38.695 1 10.660 0.001

This should be taken with some grain of salt as it appears that there is a
bit of a problem with the model.
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First there are a couple of influential points as

> wave.dfbetas[dfbetamax > 1,]
(Intercept) TypeB TypeC TypeD TypeE

22 0.1611307 -0.09398073 -1.573890166 -0.01157439 0.01292938
30 -0.0583331 0.01572651 -0.037365326 1.35894226 -0.05260388
32 0.0569754 -0.05843084 -0.054483664 -1.12959509 -0.06231752
38 0.1067719 -0.06268673 0.008085228 -0.02112444 -1.12917764

Construct1965-69 Construct1970-74 Construct1975-79 Operation1975-79
22 0.0009727626 -0.21026708 -0.002521478 -0.15803220
30 -0.0247803096 0.17300816 -0.377954582 0.15951317
32 0.0034987641 0.08859403 -0.486453042 0.02191973
38 0.1116555777 -0.08841786 0.164985538 -0.28430484

More problematic is the residual plot
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