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Negative Binomial Family

Example: Absenteeism from School in Rural New South Wales

The ’quine’ data frame in the MASS package has 146 observations on
5 variables. Children from Walgett, New South Wales, Australia, were
classified by

• Culture: aboriginal vs non-aboriginal

• Age: primary, first, second, or third form (like grade)

• Sex

• Learner status: average vs slow learner

For each child the number of days absent from school in a particular school
year was recorded.
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> summary(quine.qglm)

Call:
glm(formula = Days ~ .^4, family = quasipoisson(), data = quine)

Deviance Residuals:
Min 1Q Median 3Q Max

-7.3872 -2.5129 -0.4205 1.7424 6.6783

Coefficients: (4 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0564 0.3346 9.135 2.22e-15 ***
EthN -0.1386 0.4904 -0.283 0.7780
SexM -0.4914 0.5082 -0.967 0.3356
AgeF1 -0.6227 0.5281 -1.179 0.2406
AgeF2 -2.3632 2.2066 -1.071 0.2864
AgeF3 -0.3784 0.4296 -0.881 0.3802
LrnSL -1.9577 1.8120 -1.080 0.2822
. . .
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EthN:SexM:AgeF1:LrnSL 2.1711 2.7527 0.789 0.4319
EthN:SexM:AgeF2:LrnSL 2.1029 4.4203 0.476 0.6351
EthN:SexM:AgeF3:LrnSL NA NA NA NA
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for quasipoisson family taken to be 9.51)

Null deviance: 2073.5 on 145 degrees of freedom
Residual deviance: 1173.9 on 118 degrees of freedom

So there is some suggestion of overdispersion, which is supported by the
following residual plots.

Note that this is the largest model that can be fit with these 4 categorical
predictors, not necessarily the best model.
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An alternative approach to the quasi-likelihood model is to build a
hierarchical model for count data along the lines of the Beta-Binomial
distribution for binary data.

Yi|Ei
ind∼ Poisson(µiEi)

g(µi) = Xiβ

Ei
iid∼ Gamma(θ, θ)

E[Ei] = 1

Var(Ei) =
1
θ

Then the marginal distribution of Yi is negative binomial with density

f(y; θ, µi) =
Γ(θ + y)
Γ(θ)y!

µy
i θ

θ

(µi + θ)y+θ
; y = 0, 1, 2, . . .
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and moments

E[Yi] = E[E[Yi|Ei]] = E[µiEi] = µi

Var(Yi) = E[Var(Yi|Ei)] + Var(E[Yi|Ei])

= E[µiEi] + Var(µiEi)

= µi + µ2
iVar(Ei)

= µi +
µ2

i

θ

In this case, the bigger θ is, the less overdispersion. Note that this model
doesn’t fit into the Var(Y ) = ψV (µ) framework, exhibiting that other
possibilities exist.
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Note that this is not the parametrization often seen for the negative binomial
model, which has density

f(y; p, θ) =
Γ(θ + y)
Γ(θ)y!

pθ(1− p)y; y = 0, 1, 2, . . .

This can be made to match by setting

p =
θ

µ + θ

If θ is known, y is a member of the exponential family, and thus can be fit
by the methods already discussed. In the MASS package, the additional code
needed to fit these models is done with the negative.binomial family
function. The first argument of the function is the value of theta and
second value is the link, which takes values log (default), identity, and
sqrt, the same link functions as for the Poisson.

Negative Binomial Family 8



An earlier analysis suggested that for the Quine example, θ ≈ 2. Lets fit
the full interaction model in this case.

> summary(quine.glm)

Call:
glm(formula = Days ~ .^4, family = negative.binomial(2),

data = quine)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.2766 -0.9214 -0.2050 0.5263 1.7314

Coefficients: (4 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0564 0.3807 8.027 8.32e-13 ***
EthN -0.1386 0.5402 -0.257 0.79797
SexM -0.4914 0.5170 -0.951 0.34380
AgeF1 -0.6227 0.5192 -1.199 0.23277
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AgeF2 -2.3632 1.0977 -2.153 0.03337 *
AgeF3 -0.3784 0.4604 -0.822 0.41280
LrnSL -1.9577 1.0141 -1.931 0.05593 .
. . .
SexM:AgeF3:LrnSL NA NA NA NA
EthN:SexM:AgeF1:LrnSL 2.1711 1.9480 1.114 0.26734
EthN:SexM:AgeF2:LrnSL 2.1029 2.3865 0.881 0.38001
EthN:SexM:AgeF3:LrnSL NA NA NA NA
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for Negative Binomial(2) family
taken to be 1.060021)

Null deviance: 280.18 on 145 degrees of freedom
Residual deviance: 171.98 on 118 degrees of freedom
AIC: 1095.4
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Things look better here. The increasing variance has disappeared as can be
seen in the following plots. Also based on the Pearson based measure of
overdispersion, the negative binomial model seems to have accounted for
much of the overdispersion.
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One slight problem with this approach is that θ needs to be specified. This
isn’t required as we can estimate it along with β.

MASS has a function glm.nb for getting the maximum likelihood estimate
of β and θ jointly. It works similarly to the glm function, but only works the
negative binomial model. Thus it doesn’t take a family option. Instead it
takes a link options, with possibilities log (default), identity, and sqrt.
There are summary and anova methods available for this function.

For the full interaction model

> quine.nb <- glm.nb(Days ~ .^4, data = quine)

> c(theta = quine.nb$theta, SE = quine.nb$SE)
theta SE

1.9283601 0.2688968

> summary(quine.nb)

Call:
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glm.nb(formula = Days ~ .^4, data = quine, init.theta = 1.92836014510701,
link = log)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.2377 -0.9079 -0.2019 0.5173 1.7043

Coefficients: (4 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.0564 0.3760 8.128 4.38e-16 ***
EthN -0.1386 0.5334 -0.260 0.795023
SexM -0.4914 0.5104 -0.963 0.335653
AgeF1 -0.6227 0.5125 -1.215 0.224334
AgeF2 -2.3632 1.0770 -2.194 0.028221 *
AgeF3 -0.3784 0.4546 -0.832 0.405215
LrnSL -1.9577 0.9967 -1.964 0.049493 *

. . .
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EthN:SexM:AgeF2:LrnSL 2.1029 2.3444 0.897 0.369718
EthN:SexM:AgeF3:LrnSL NA NA NA NA
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for Negative Binomial(1.9284) family
taken to be 1)

Null deviance: 272.29 on 145 degrees of freedom
Residual deviance: 167.45 on 118 degrees of freedom
AIC: 1097.3

Number of Fisher Scoring iterations: 1

Correlation of Coefficients:
(Intercept) EthN SexM AgeF1 AgeF2 AgeF3

EthN -0.70
SexM -0.74 0.52
AgeF1 -0.73 0.52 0.54
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AgeF2 -0.35 0.25 0.26 0.26

. . .

EthN:SexM:AgeF1:LrnSL -0.43
EthN:SexM:AgeF2:LrnSL -0.69 0.52

Theta: 1.928
Std. Err.: 0.269

2 x log-likelihood: -1039.324

A more reasonable model in this situation, is to eliminate the
Eth:Sex:Age:Lrn and Eth:Sex:Lrn interactions. This can be seen with
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> quine2.nb <- glm.nb(Days ~ Lrn/(Age + Eth + Sex)^2, data=quine)

> anova(quine2.nb, quine.nb)
Likelihood ratio tests of Negative Binomial Models

Response: Days
Model theta Resid. df 2 x log-lik. Test

1 Lrn/(Age + Eth + Sex)^2 1.865343 123 -1043.409
2 (Eth + Sex + Age + Lrn)^4 1.928360 118 -1039.324 1 vs 2

df LR stat. Pr(Chi)
1
2 5 4.084768 0.5372772

The test performed here is a likelihood ratio test, assuming the estimated θ
from the full model. The log-likelihood is calculated for the reduced model,
under the θ calculated for the full model.

It ends up for the deviance tests to be applicable, the θ parameter needs to
be held constant for all fitted models.

The residual plots do not suggest any serious problems with the smaller
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model, as seen in the following plot
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Log-linear Models for Two-way Contingency Tables

Consider the case where two categorical variables are of interest, X with r
possible levels and Y with c possible levels.

For now, consider both as response variables (we’ll consider other sampling
schemes later)

Lets form the r × c table, with the (i, j)th entry equal to the number of
observations with X = xi and Y = yj, denoted by nij

Example: Business Administration Majors and Gender

A study of the career plans of young men and women sent questionaires to
all 722 members of the senior class in the College of Business Administration
at the University of Illinois. One question asked which major within the
business program the student had chosen.
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Major Women Men

Accounting 68 56

Administration 91 40

Economics 5 6

Finance 61 59

Lets assume that this data was generated under Poisson sampling. We want
to come up with a model on how the cell counts depend on the levels of X
and Y .

The nature of dependence relates to the association and the interaction
structure among the variables.
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Model for the data

• The joint PDF of (X, Y ): P [X = xi, Y = yi] = πij

• Marginal PDF of X: P [X = xi] = πi+

• Marginal PDF of Y : P [Y = Yj] = π+j

• Expected cell counts: µij = nπij

where n = n++ is the total count.

• N = rc is the effective sample size (number of observations).

• Poisson rate: πij

• Log-linear model on log µij

Log-linear Models for Two-way Contingency Tables 21



Independence Model for Two-way Table

If X and Y are independent, then

P [X = xi, Y = yi] = P [X = xi]× P [Y = yi] = πi+π+j

and the expected count is

µij = nπij = Nπi+π+j

This implies that the log-linear model satisfies

log µij = log N + log πi+ + log π+j

= λ + λX
i + λY

j

Independence Model for Two-way Table 22



The estimates for the marginal probabilities are

π̂i+ =
ni+

n
π̂+j =

n+j

n

The fitted values for this model are

µij = nπ̂i+π̂+j =
ni+n+j

n

In R, the model can be fit by

> business.ind <- glm(n ~ major + gender, family=poisson(),
data=business)
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> summary(business.ind)

Call:
glm(formula = n ~ major + gender, family = poisson(),
data = business)

Deviance Residuals:
1 2 3 4 5 6 7 8

-0.5085 0.5872 1.6257 -2.0806 -0.5802 0.6291 -1.0940 1.2297

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.28054 0.09959 42.981 < 2e-16 ***
majorAdministration 0.05492 0.12529 0.438 0.66117
majorEconomics -2.42239 0.31460 -7.700 1.36e-14 ***
majorFinance -0.03279 0.12805 -0.256 0.79790
genderMale -0.33470 0.10323 -3.242 0.00119 **
---
(Dispersion parameter for poisson family taken to be 1)

Independence Model for Two-way Table 24



Null deviance: 168.473 on 7 degrees of freedom
Residual deviance: 11.017 on 3 degrees of freedom
AIC: 63.832

Number of Fisher Scoring iterations: 4

> anova(business.ind, test="Chisq")
Analysis of Deviance Table

Model: poisson, link: log
Response: n

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 7 168.473
major 3 146.796 4 21.677 1.294e-31
gender 1 10.661 3 11.017 0.001
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We can check for goodness of fit with either the deviance or Pearson GOF
tests.

For this example, the independence model doesn’t seems to fit properly.
The deviance test gives

> pchisq(deviance(business.ind),df.residual(business.ind),
lower.tail=F)

[1] 0.01163662

The Pearson test for two way tables can be calculated by

> business.tab
gender

major Female Male
Accounting 68 56
Administration 91 40
Economics 5 6
Finance 61 59
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> chisq.test(business.tab)

Pearson’s Chi-squared test

data: business.tab X-squared = 10.8267, df = 3, p-value = 0.0127

Warning message: Chi-squared approximation may be incorrect in:
chisq.test(business.tab)

where business.tab is the 2-way table of counts.
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