# **Log-linear Models for Contingency Tables**

Statistics 149

Spring 2006



Copyright O2006 by Mark E. Irwin

## Log-linear Models for Two-way Contingency Tables

**Example:** Business Administration Majors and Gender

A study of the career plans of young men and women sent questionaires to all 722 members of the senior class in the College of Business Administration at the University of Illinois. One question asked which major within the business program the student had chosen.

| Major          | Women | Men |
|----------------|-------|-----|
| Accounting     | 68    | 56  |
| Administration | 91    | 40  |
| Economics      | 5     | 6   |
| Finance        | 61    | 59  |

Model for the data

• The joint PDF of (X, Y):  $P[X = x_i, Y = y_i] = \pi_{ij}$ 

• Marginal PDF of X: 
$$P[X = x_i] = \pi_{i+1}$$

- Marginal PDF of Y:  $P[Y = Y_j] = \pi_{+j}$
- Expected cell counts:  $\mu_{ij} = n\pi_{ij}$ where  $n = n_{++}$  is the total count.
- N = rc is the effective sample size (number of observations).
- Poisson rate:  $\pi_{ij}$
- Log-linear model on  $\log \mu_{ij}$

### Independence Model for Two-way Tables

If X and Y are independent, then

$$P[X = x_i, Y = y_i] = P[X = x_i] \times P[Y = y_i] = \pi_{i+}\pi_{+j}$$

and the expected count is

$$\mu_{ij} = n\pi_{ij} = n\pi_{i+}\pi_{+j}$$

This implies that the log-linear model satisfies

$$\log \mu_{ij} = \log n + \log \pi_{i+} + \log \pi_{+j}$$
$$= \lambda + \lambda_i^X + \lambda_j^Y$$

The estimates for the marginal probabilities are

$$\hat{\pi}_{i+} = \frac{n_{i+}}{n} \qquad \hat{\pi}_{+j} = \frac{n_{+j}}{n}$$

The fitted values for this model are

$$\mu_{ij} = n\hat{\pi}_{i+}\hat{\pi}_{+j} = \frac{n_{i+}n_{+j}}{n}$$

This can seen by maximizing the log likelihood (under the constraint  $\sum \pi_{i+} = \sum \pi_{+j} = \sum \pi_{ij} = 1$ ), which has the form

$$l(\boldsymbol{\pi}) = \sum_{i=1}^{r} \sum_{j=1}^{c} \{y_{ij} \log n\pi_{ij} - n\pi_{ij}\}$$
$$= \sum_{i=1}^{r} \sum_{j=1}^{c} \{y_{ij} \log \pi_{i+} + y_{ij} \log \pi_{+j} + y_{ij} \log n\} - n$$

If using the

$$\log \mu_{ij} = \lambda + \lambda_i^X + \lambda_j^Y$$

parameterization you need deal with constraints on  $\lambda_i^X$  and  $\lambda_j^Y$ . These constraints are needed since  $\sum \pi_{i+} = \sum \pi_{+j} = \sum \pi_{ij} = 1$  must hold. Not a problem in **R** as its approach to generating contrasts when dealing with categorical predictors is a valid approach.

One consequence of this that for the independence model, the number of parameters to be estimated is r+c-1. There is  $\lambda$ , r-1  $\lambda_i^X$ s and c-1  $\lambda_j^Y$ s.

As in the ANOVA setting, there is no unique approach for dealing with constraints. Common choices in this setting are  $\hat{\lambda}_1^X = \hat{\lambda}_1^Y = 0$  (**R** default) or  $\hat{\lambda}_r^X = \hat{\lambda}_c^Y = 0$ .

Any valid constraint must satisfy

$$\hat{\lambda}_r^X = \log\left(1 - e^{\hat{\lambda}_1^X} - \dots - e^{\hat{\lambda}_{r-1}^X}\right)$$

(similarly for  $\hat{\lambda}_c^Y$ )

What is unique are the differences  $\hat{\lambda}_i^X - \hat{\lambda}_j^X$  and  $\hat{\lambda}_i^Y - \hat{\lambda}_j^Y$  (we need to deal with contrasts).

One reason this is important is to consider the odds

$$\frac{\pi_{ij}}{\pi_{ik}} = \frac{P[X = x_i, Y = y_j]}{P[X = x_i, Y = y_k]} = \frac{\mu_{ij}}{\mu_{ik}}$$

Under the independence assumption, the log odds satisfies

$$\log \frac{\pi_{ij}}{\pi_{ik}} = \log \pi_{ij} - \log \pi_{ik}$$
$$= (\lambda + \lambda_i^X + \lambda_j^Y) - (\lambda + \lambda_i^X + \lambda_k^Y)$$
$$= \lambda_j^Y - \lambda_k^Y$$

Note that this does not depend on the level of X, which should be the case when X and Y are independent. Also note that a similar relationship holds for  $\log \frac{\pi_{ij}}{\pi_{kj}}$  (fix Y vary X)

### Saturated Model for Two-way Tables

The saturated model for the two-way table can be written

$$\log \mu_{ij} = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_{ij}^{XY}$$

The terms  $\lambda_{ij}^{XY}$  represent the interaction between X and Y.

In this case, the effect of Y depends on the level of X and similarly the effect of X depends on the level of Y.

One way to see this is to look at the odds ratio

$$\phi_{ik,jl} = \frac{\pi_{ij}\pi_{kl}}{\pi_{kj}\pi_{il}} = \frac{\mu_{ij}\mu_{kl}}{\mu_{kj}\mu_{il}}$$

The odds ratios are useful measures to describe dependency between categorical variables.

To compare accounting and administration for men and women

$$\hat{\phi} = \frac{68 \times 40}{56 \times 91} = 0.53$$

| Major          | Women | Men |
|----------------|-------|-----|
| Accounting     | 68    | 56  |
| Administration | 91    | 40  |
| Economics      | 5     | 6   |
| Finance        | 61    | 59  |

So the odds of women to men in accounting is about half of that in administration.

 $\log \phi_{ik,jl}$  can be shown to have the form

$$\lambda_{ij}^{XY} - \lambda_{kj}^{XY} - \lambda_{il}^{XY} + \lambda_{kl}^{XY}$$

Under independence, all  $\lambda_{ij}^{XY} = 0$  and the log odds ratio = 0 (odds ratio = 1). Note that this goes the other way as well, if all the  $\lambda_{ij}^{XY} = 0$ , then X and Y must be independent.

So another way of thinking of the  $\lambda_{ij}^{XY}$  is that the describe the form of dependency between X and Y.

For the saturated model, there are rc different parameters to be fit:  $\lambda$ ,  $r-1 \ \lambda_i^X$ s,  $c-1 \ \lambda_j^Y$ s and  $(r-1)(c-1) \ \lambda_{ij}^{XY}$ s. A consequence of this is that the fitted cell counts satisfy

$$\hat{\mu}_{ij} = n_{ij}$$

## **Deviances in Contingency Tables**

This leads to the deviance of a contingency model having the form

$$X^2 = \sum_{\text{all cells}} 2y_{ij} \log \frac{y_{ij}}{\hat{\mu}_{ij}}$$

i.e.  $\sum 2Obs \log \frac{Obs}{Exp}$ 

Note that this has the same form as the deviance for the binomial regression models discussed earlier. This makes sense that if we condition on n, the total count,

$$(n_{11},\ldots,n_{rc})|n \sim Multinomial(n,\boldsymbol{\pi})$$

As before  $X^2$  is approximately distributed  $\chi^2_{df}$  where df = rc - # params.

For the independence model

$$df = rc - (r + c - 1) = (r - 1)(c - 1)$$

#### Deviances in Contingency Tables

For the saturated model df = 0

As before  $X^2\ {\rm can}$  be used for Goodness of fit. For the business major example

```
> summary(business.ind)
```

```
Call:
glm(formula = n ~ major + gender, family = poisson(),
    data = business)
```

### Coefficients:

|                     | Estimate   | Std. Error  | z value  | $\Pr( z )$ |     |
|---------------------|------------|-------------|----------|------------|-----|
| (Intercept)         | 4.28054    | 0.09959     | 42.981   | < 2e-16    | *** |
| majorAdministration | 0.05492    | 0.12529     | 0.438    | 0.66117    |     |
| majorEconomics      | -2.42239   | 0.31460     | -7.700   | 1.36e-14   | *** |
| majorFinance        | -0.03279   | 0.12805     | -0.256   | 0.79790    |     |
| genderMale          | -0.33470   | 0.10323     | -3.242   | 0.00119    | **  |
|                     |            |             |          |            |     |
| Signif. codes: 0 ', | ***' 0.001 | L '**' 0.01 | ·*· 0.05 | 5 '.' 0.1  | , , |

1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 168.473 on 7 degrees of freedom Residual deviance: 11.017 on 3 degrees of freedom AIC: 63.832

So there is some evidence of lack of fit. This is also supported by Pearson Chi-square test

$$X_p^2 = \sum_{\text{all cells}} \frac{(n_{ij} - \hat{\mu}_{ij})^2}{\hat{\mu}_{ij}}$$

which also has approximately a  $\chi^2_{df}$  distribution.

> pearson.ind <- sum(resid(business.ind,type='pearson')^2)
> pearson.ind
[1] 10.82673
> pchisq(pearson.ind, df.residual(business.ind), lower.tail=F)
[1] 0.01270068

Note that for two-way tables, this test can be done in  $\mathbf{R}$  by

```
> chisq.test(business.tab)
```

Pearson's Chi-squared test

data: business.tab X-squared = 10.8267, df = 3, p-value = 0.0127

Warning message: Chi-squared approximation may be incorrect in: chisq.test(business.tab)

As discussed before, the  $\chi^2_{df}$  approximation works better in both tests when  $\mu_{ij}$  are big. In this case one of the fitted cell counts is just under 5.

To get a handle on where the problems are, lets look at the fits and residuals

|                | Obser  | ved  | Expected |       |  |
|----------------|--------|------|----------|-------|--|
| Major          | Female | Male | Female   | Male  |  |
| Accounting     | 68     | 56   | 72.28    | 51.72 |  |
| Administration | 91     | 40   | 76.36    | 54.64 |  |
| Economics      | 5      | 6    | 6.41     | 4.59  |  |
| Finance        | 61     | 59   | 69.95    | 50.05 |  |

|                | Deviance | e Residuals | Pearson Residuals |       |  |
|----------------|----------|-------------|-------------------|-------|--|
| Major          | Female   | Male        | Female            | Male  |  |
| Accounting     | -0.51    | 0.59        | -0.50             | 0.60  |  |
| Administration | 1.63     | -2.08       | 1.68              | -1.98 |  |
| Economics      | -0.58    | 0.63        | -0.56             | 0.66  |  |
| Finance        | -1.09    | 1.23        | -1.07             | 1.26  |  |

It appears that the big difference occurs with administration. More women than men go into that major than would be expected under independence. The other majors tend to be closer to 50:50 women to men.

This can also be seen by looking at the  $\hat{\phi}_{ik,jl}$ . For example, when comparing accounting and finance

$$\hat{\phi} = \frac{68 \times 59}{56 \times 61} = 1.17$$

Another way of looking for problems in the fit is to examine the  $\hat{\lambda}_{ij}^{XY}$ . For the example

### Deviance Residuals:

[1] 0 0 0 0 0 0 0 0

Coefficients:

|                                           | Estimate | Std. Error | z value | Pr(> z ) |     |
|-------------------------------------------|----------|------------|---------|----------|-----|
| (Intercept)                               | 4.2195   | 0.1213     | 34.795  | < 2e-16  | *** |
| majorAdministration                       | 0.2914   | 0.1603     | 1.818   | 0.0691   | •   |
| majorEconomics                            | -2.6101  | 0.4634     | -5.633  | 1.77e-08 | *** |
| majorFinance                              | -0.1086  | 0.1764     | -0.616  | 0.5379   |     |
| genderMale                                | -0.1942  | 0.1805     | -1.076  | 0.2820   |     |
| <pre>majorAdministration:genderMale</pre> | -0.6278  | 0.2618     | -2.398  | 0.0165   | *   |
| majorEconomics:genderMale                 | 0.3765   | 0.6318     | 0.596   | 0.5513   |     |
| majorFinance:genderMale                   | 0.1608   | 0.2567     | 0.626   | 0.5310   |     |
|                                           |          |            |         |          |     |

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1.6847e+02 on 7 degrees of freedom Residual deviance: -8.8818e-16 on 0 degrees of freedom AIC: 58.815 > anova(business.int, test="Chisq")
Analysis of Deviance Table

Model: poisson, link: log

Response: n

Terms added sequentially (first to last)

|                         | Df | Deviance | Resid. | Df | Resid. Dev | 7 P(> Chi ) |
|-------------------------|----|----------|--------|----|------------|-------------|
| NULL                    |    |          |        | 7  | 168.473    | 3           |
| major                   | 3  | 146.796  |        | 4  | 21.677     | 7 1.294e-31 |
| gender                  | 1  | 10.661   |        | 3  | 11.017     | 0.001       |
| <pre>major:gender</pre> | 3  | 11.017   |        | 0  | -8.882e-16 | 6 0.012     |

How this gets exhibited can vary on the constraints placed on the  $\lambda_i^X {\rm s},\,\lambda_j^Y {\rm s},$  and  $\lambda_{ij}^{XY} {\rm s}.$ 

For example, using the constraints

$$\begin{split} &\sum_{i}\lambda_{i}^{X}=0\\ &\sum_{j}\lambda_{j}^{Y}=0\\ &\sum_{i}\lambda_{ij}^{XY}=0 \quad \text{for each } j\\ &\sum_{j}\lambda_{ij}^{XY}=0 \quad \text{for each } i \end{split}$$

leads to estimated parameters

> options(contrasts=c("contr.sum","contr.poly"))

> summary(business.int2)

Deviance Residuals: [1] 0 0 0 0 0 0 0 0

Coefficients:

|                           | Estimate | Std. | Error | z value | Pr( z )  |     |
|---------------------------|----------|------|-------|---------|----------|-----|
| (Intercept)               | 3.50428  | 0.   | 08556 | 40.955  | < 2e-16  | *** |
| major1                    | 0.61815  | 0.   | 10673 | 5.792   | 6.97e-09 | *** |
| major2                    | 0.59559  | 0.   | 10872 | 5.478   | 4.30e-08 | *** |
| major3                    | -1.80368 | 0.   | 23055 | -7.823  | 5.15e-15 | *** |
| gender1                   | 0.10839  | 0.   | 08556 | 1.267   | 0.20522  |     |
| <pre>major1:gender1</pre> | -0.01132 | 0.   | 10673 | -0.106  | 0.91557  |     |
| <pre>major2:gender1</pre> | 0.30260  | 0.   | 10872 | 2.783   | 0.00538  | **  |
| major3:gender1            | -0.19955 | 0.   | 23055 | -0.866  | 0.38674  |     |
|                           |          |      |       |         |          |     |

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1.6847e+02 on 7 degrees of freedom Residual deviance: -9.1038e-15 on 0 degrees of freedom AIC: 58.815

> anova(business.int2, test="Chisq")
Analysis of Deviance Table

Model: poisson, link: log

Response: n

Terms added sequentially (first to last)

|                         | Df | Deviance | Resid. | $\mathtt{Df}$ | Resid. 1 | Dev | P(> Chi ) |
|-------------------------|----|----------|--------|---------------|----------|-----|-----------|
| NULL                    |    |          |        | 7             | 168.4    | 473 |           |
| major                   | 3  | 146.796  |        | 4             | 21.0     | 677 | 1.294e-31 |
| gender                  | 1  | 10.661   |        | 3             | 11.0     | 017 | 0.001     |
| <pre>major:gender</pre> | 3  | 11.017   |        | 0             | -9.104e  | -15 | 0.012     |

Note that we are not changing the model, just how it is described, so it is reasonable that different descriptions will lead to different descriptions of how the data differs from independence.

Notice that the deviances reported under the 2 parameterizations are the same, up to rounding differences.

**Example:** Belief in the afterlife

As part of the 1991 General Social Survey, conducted by the National Opinion Research Center asked participants about whether they believed in an afterlife. The data, broken down by gender are

| Belief | Females | Males | Total |
|--------|---------|-------|-------|
| Yes    | 435     | 375   | 810   |
| No     | 147     | 134   | 281   |
| Total  | 582     | 509   | 1091  |

Lets examine whether belief and gender are associated.

> summary(afterlife.int)

Coefficients:

|                                 | Estimate | Std. Error | z value | Pr( z ) |     |
|---------------------------------|----------|------------|---------|---------|-----|
| (Intercept)                     | 4.99043  | 0.08248    | 60.506  | <2e-16  | *** |
| beliefYes                       | 1.08491  | 0.09540    | 11.372  | <2e-16  | *** |
| genderMale                      | -0.09259 | 0.11944    | -0.775  | 0.438   |     |
| <pre>beliefYes:genderMale</pre> | -0.05583 | 0.13868    | -0.403  | 0.687   |     |

> anova(afterlife.int, test="Chisq")

|                          | $\mathtt{Df}$ | Deviance | Resid. | Df | Resid. | Dev  | P(> Chi ) |
|--------------------------|---------------|----------|--------|----|--------|------|-----------|
| NULL                     |               |          |        | 3  | 272.   | 685  |           |
| belief                   | 1             | 267.635  |        | 2  | 5.     | 050  | 3.718e-60 |
| gender                   | 1             | 4.888    |        | 1  | 0.     | 162  | 0.027     |
| <pre>belief:gender</pre> | 1             | 0.162    |        | 0  | 1.197e | e-13 | 0.687     |

In this case, there is little evidence for including the interaction and thus belief in an afterlife and gender appear to be independent.

### Log-linear Model versus Logistic Regression

Lets suppose that X takes two levels, such as in the afterlife belief example. Then

$$\log \frac{\mu_{1j}}{\mu_{2j}} = \log \frac{\pi_j}{1 - \pi_j}$$

is the log odds where  $\pi_j = P[X = 1 | Y = Y_j]$ .

So  $\log \phi_{12,jk}$  is the log odds ratio comparing Y at level j with Y at level k. Thus we are effectively modeling the same parameters in the saturated log-linear model as we are in logistic regression with Y as a categorical predictor.

It can be shown that inference in the two approaches leads to the same answer. To exhibit this, lets fit the afterlife belief data both ways

```
> summary(afterlife.int)
Call: glm(formula = n ~ belief * gender, family = poisson())
Coefficients:
                   Estimate Std. Error z value Pr(|z|)
(Intercept)
                    4.99043 0.08248 60.506 <2e-16 ***
beliefYes
                   1.08491 0.09540 11.372 <2e-16 ***
          -0.09259 0.11944 -0.775 0.438
genderMale
beliefYes:genderMale -0.05583 0.13868 -0.403
                                               0.687
> summary(afterlife.logit)
Call: glm(formula = agree ~ gen, family = binomial())
Coefficients:
          Estimate Std. Error z value Pr(|z|)
(Intercept) 1.14074 0.21572 5.288 1.24e-07 ***
    -0.05583 0.13868 -0.403 0.687
gen
```

```
> anova(afterlife.int, test="Chisq")
Analysis of Deviance Table
```

```
Model: poisson, link: log
```

|                          | $\mathtt{Df}$ | Deviance | Resid. | $\mathtt{Df}$ | Resid. I            | Dev | P(> Chi ) |
|--------------------------|---------------|----------|--------|---------------|---------------------|-----|-----------|
| NULL                     |               |          |        | 3             | 272.0               | 685 |           |
| belief                   | 1             | 267.635  |        | 2             | 5.0                 | 050 | 3.718e-60 |
| gender                   | 1             | 4.888    |        | 1             | 0.1                 | 162 | 0.027     |
| <pre>belief:gender</pre> | 1             | 0.162    |        | 0             | 1.197e <sup>.</sup> | -13 | 0.687     |

```
> anova(afterlife.logit, test="Chisq")
Analysis of Deviance Table
```

```
Model: binomial, link: logit
```

```
Df Deviance Resid. Df Resid. Dev P(>|Chi|)NULL1gen10.1620008.415e-140.68733
```

## **Other Sampling Schemes**

So far only tables generated by Poisson sampling schemes have been considered. However many other schemes lead to the same analysis. These come by fixing different marginal counts.

• Multinomial sampling: fix n.

In the case we are still modeling the joint probabilities  $\pi_{ij}$ . However it is with 1 multinomial sample instead of rc Poisson samples.

• Product multinomial: fix row  $(n_{i+})$  or column totals  $(n_{+j})$ .

In this case of fixing the row totals, each row is considered as a multinomial sample we are modeling  $P[Y = y_j | X = x_i]$ . So there are r different independent multinomial samples.

Instead of looking for independence, normally we would instead look for homogeneity of probabilities (i.e.  $P[Y = y_j | X = x_i] = P[Y = y_j]$  for all  $x_i$ ).

The justification of these statements can be made by showing that the likelihoods in these case have equivalent forms when dealing with the  $\pi_{ij}$ s. This relates to the fact that if  $Y_1 \sim P(\mu_1)$  and  $Y_2 \sim P(\mu_2)$  and  $Y_1$  and  $Y_2$  are independent

$$Y_1|Y_1 + Y_2 = n \sim Bin(n,\pi)$$

where  $\pi = \frac{\mu_1}{\mu_1 + \mu_2}$ .