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Log-linear Models for Two-way Contingency Tables

Example: Business Administration Majors and Gender

A study of the career plans of young men and women sent questionaires to
all 722 members of the senior class in the College of Business Administration
at the University of Illinois. One question asked which major within the
business program the student had chosen.

Major Women Men

Accounting 68 56

Administration 91 40

Economics 5 6

Finance 61 59
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Model for the data

• The joint PDF of (X, Y ): P [X = xi, Y = yi] = πij

• Marginal PDF of X: P [X = xi] = πi+

• Marginal PDF of Y : P [Y = Yj] = π+j

• Expected cell counts: µij = nπij

where n = n++ is the total count.

• N = rc is the effective sample size (number of observations).

• Poisson rate: πij

• Log-linear model on log µij
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Independence Model for Two-way Tables

If X and Y are independent, then

P [X = xi, Y = yi] = P [X = xi]× P [Y = yi] = πi+π+j

and the expected count is

µij = nπij = nπi+π+j

This implies that the log-linear model satisfies

log µij = log n + log πi+ + log π+j

= λ + λX
i + λY

j
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The estimates for the marginal probabilities are

π̂i+ =
ni+

n
π̂+j =

n+j

n

The fitted values for this model are

µij = nπ̂i+π̂+j =
ni+n+j

n

This can seen by maximizing the log likelihood (under the constraint∑
πi+ =

∑
π+j =

∑
πij = 1), which has the form

l(π) =
r∑

i=1

c∑

j=1

{yij log nπij − nπij}

=
r∑

i=1

c∑

j=1

{yij log πi+ + yij log π+j + yij log n} − n
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If using the
log µij = λ + λX

i + λY
j

parameterization you need deal with constraints on λX
i and λY

j . These
constraints are needed since

∑
πi+ =

∑
π+j =

∑
πij = 1 must hold. Not

a problem in R as its approach to generating contrasts when dealing with
categorical predictors is a valid approach.

One consequence of this that for the independence model, the number of
parameters to be estimated is r+c−1. There is λ, r−1 λX

i s and c−1 λY
j s.

As in the ANOVA setting, there is no unique approach for dealing with
constraints. Common choices in this setting are λ̂X

1 = λ̂Y
1 = 0 (R default)

or λ̂X
r = λ̂Y

c = 0.

Any valid constraint must satisfy

λ̂X
r = log

(
1− eλ̂X

1 − . . .− eλ̂X
r−1

)

(similarly for λ̂Y
c )

Independence Model for Two-way Tables 5



What is unique are the differences λ̂X
i − λ̂X

j and λ̂Y
i − λ̂Y

j (we need to deal
with contrasts).

One reason this is important is to consider the odds

πij

πik
=

P [X = xi, Y = yj]
P [X = xi, Y = yk]

=
µij

µik

Under the independence assumption, the log odds satisfies

log
πij

πik
= log πij − log πik

= (λ + λX
i + λY

j )− (λ + λX
i + λY

k )

= λY
j − λY

k

Note that this does not depend on the level of X, which should be the case
when X and Y are independent. Also note that a similar relationship holds
for log πij

πkj
(fix Y vary X)
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Saturated Model for Two-way Tables

The saturated model for the two-way table can be written

log µij = λ + λX
i + λY

j + λXY
ij

The terms λXY
ij represent the interaction between X and Y .

In this case, the effect of Y depends on the level of X and similarly the
effect of X depends on the level of Y .

One way to see this is to look at the odds ratio

φik,jl =
πijπkl

πkjπil
=

µijµkl

µkjµil

The odds ratios are useful measures to describe dependency between
categorical variables.
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Major Women Men

Accounting 68 56

Administration 91 40

Economics 5 6

Finance 61 59

To compare accounting and administration
for men and women

φ̂ =
68× 40
56× 91

= 0.53

So the odds of women to men in
accounting is about half of that in
administration.

log φik,jl can be shown to have the form

λXY
ij − λXY

kj − λXY
il + λXY

kl

Under independence, all λXY
ij = 0 and the log odds ratio = 0 (odds ratio =

1). Note that this goes the other way as well, if all the λXY
ij = 0, then X

and Y must be independent.
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So another way of thinking of the λXY
ij is that the describe the form of

dependency between X and Y .

For the saturated model, there are rc different parameters to be fit: λ,
r − 1 λX

i s, c − 1 λY
j s and (r − 1)(c − 1) λXY

ij s. A consequence of this is
that the fitted cell counts satisfy

µ̂ij = nij
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Deviances in Contingency Tables

This leads to the deviance of a contingency model having the form

X2 =
∑

all cells

2yij log
yij

µ̂ij

i.e.
∑

2Obs log Obs
Exp

Note that this has the same form as the deviance for the binomial regression
models discussed earlier. This makes sense that if we condition on n, the
total count,

(n11, . . . , nrc)|n ∼ Multinomial(n, π)

As before X2 is approximately distributed χ2
df where df = rc−# params.

For the independence model

df = rc− (r + c− 1) = (r − 1)(c− 1)
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For the saturated model df = 0

As before X2 can be used for Goodness of fit. For the business major
example

> summary(business.ind)

Call:
glm(formula = n ~ major + gender, family = poisson(),
data = business)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.28054 0.09959 42.981 < 2e-16 ***
majorAdministration 0.05492 0.12529 0.438 0.66117
majorEconomics -2.42239 0.31460 -7.700 1.36e-14 ***
majorFinance -0.03279 0.12805 -0.256 0.79790
genderMale -0.33470 0.10323 -3.242 0.00119 **
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Deviances in Contingency Tables 11



(Dispersion parameter for poisson family taken to be 1)

Null deviance: 168.473 on 7 degrees of freedom
Residual deviance: 11.017 on 3 degrees of freedom
AIC: 63.832

> pchisq(deviance(business.ind),df.residual(business.ind),
lower.tail=F)

[1] 0.01163662

So there is some evidence of lack of fit. This is also supported by Pearson
Chi-square test

X2
p =

∑

all cells

(nij − µ̂ij)2

µ̂ij

which also has approximately a χ2
df distribution.
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> pearson.ind <- sum(resid(business.ind,type=’pearson’)^2)
> pearson.ind
[1] 10.82673
> pchisq(pearson.ind, df.residual(business.ind), lower.tail=F)
[1] 0.01270068

Note that for two-way tables, this test can be done in R by

> chisq.test(business.tab)

Pearson’s Chi-squared test

data: business.tab X-squared = 10.8267, df = 3, p-value = 0.0127

Warning message: Chi-squared approximation may be incorrect in:
chisq.test(business.tab)

As discussed before, the χ2
df approximation works better in both tests when

µij are big. In this case one of the fitted cell counts is just under 5.
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To get a handle on where the problems are, lets look at the fits and residuals

Observed Expected

Major Female Male Female Male

Accounting 68 56 72.28 51.72

Administration 91 40 76.36 54.64

Economics 5 6 6.41 4.59

Finance 61 59 69.95 50.05

Deviance Residuals Pearson Residuals

Major Female Male Female Male

Accounting -0.51 0.59 -0.50 0.60

Administration 1.63 -2.08 1.68 -1.98

Economics -0.58 0.63 -0.56 0.66

Finance -1.09 1.23 -1.07 1.26
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It appears that the big difference occurs with administration. More women
than men go into that major than would be expected under independence.
The other majors tend to be closer to 50:50 women to men.

This can also be seen by looking at the φ̂ik,jl. For example, when comparing
accounting and finance

φ̂ =
68× 59
56× 61

= 1.17

Another way of looking for problems in the fit is to examine the λ̂XY
ij . For

the example

> summary(business.int)

Call:
glm(formula = n ~ major * gender, family = poisson(),

data = business)
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Deviance Residuals:
[1] 0 0 0 0 0 0 0 0

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.2195 0.1213 34.795 < 2e-16 ***
majorAdministration 0.2914 0.1603 1.818 0.0691 .
majorEconomics -2.6101 0.4634 -5.633 1.77e-08 ***
majorFinance -0.1086 0.1764 -0.616 0.5379
genderMale -0.1942 0.1805 -1.076 0.2820
majorAdministration:genderMale -0.6278 0.2618 -2.398 0.0165 *
majorEconomics:genderMale 0.3765 0.6318 0.596 0.5513
majorFinance:genderMale 0.1608 0.2567 0.626 0.5310
---
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1.6847e+02 on 7 degrees of freedom
Residual deviance: -8.8818e-16 on 0 degrees of freedom
AIC: 58.815
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> anova(business.int, test="Chisq")
Analysis of Deviance Table

Model: poisson, link: log

Response: n

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 7 168.473
major 3 146.796 4 21.677 1.294e-31
gender 1 10.661 3 11.017 0.001
major:gender 3 11.017 0 -8.882e-16 0.012

How this gets exhibited can vary on the constraints placed on the λX
i s, λY

j s,

and λXY
ij s.
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For example, using the constraints

∑

i

λX
i = 0

∑

j

λY
j = 0

∑

i

λXY
ij = 0 for each j

∑

j

λXY
ij = 0 for each i

leads to estimated parameters

> options(contrasts=c("contr.sum","contr.poly"))
> business.int2 <- glm(n ~ major * gender, family=poisson(),

data=business)
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> summary(business.int2)

Deviance Residuals:
[1] 0 0 0 0 0 0 0 0

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.50428 0.08556 40.955 < 2e-16 ***
major1 0.61815 0.10673 5.792 6.97e-09 ***
major2 0.59559 0.10872 5.478 4.30e-08 ***
major3 -1.80368 0.23055 -7.823 5.15e-15 ***
gender1 0.10839 0.08556 1.267 0.20522
major1:gender1 -0.01132 0.10673 -0.106 0.91557
major2:gender1 0.30260 0.10872 2.783 0.00538 **
major3:gender1 -0.19955 0.23055 -0.866 0.38674
---
(Dispersion parameter for poisson family taken to be 1)
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Null deviance: 1.6847e+02 on 7 degrees of freedom
Residual deviance: -9.1038e-15 on 0 degrees of freedom
AIC: 58.815

> anova(business.int2, test="Chisq")
Analysis of Deviance Table

Model: poisson, link: log

Response: n

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 7 168.473
major 3 146.796 4 21.677 1.294e-31
gender 1 10.661 3 11.017 0.001
major:gender 3 11.017 0 -9.104e-15 0.012
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Note that we are not changing the model, just how it is described, so it
is reasonable that different descriptions will lead to different descriptions of
how the data differs from independence.

Notice that the deviances reported under the 2 parameterizations are the
same, up to rounding differences.

Example: Belief in the afterlife

As part of the 1991 General Social Survey, conducted by the National
Opinion Research Center asked participants about whether they believed in
an afterlife. The data, broken down by gender are

Belief Females Males Total

Yes 435 375 810

No 147 134 281

Total 582 509 1091

Lets examine whether belief and gender are associated.
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> summary(afterlife.int)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.99043 0.08248 60.506 <2e-16 ***
beliefYes 1.08491 0.09540 11.372 <2e-16 ***
genderMale -0.09259 0.11944 -0.775 0.438
beliefYes:genderMale -0.05583 0.13868 -0.403 0.687

> anova(afterlife.int, test="Chisq")

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 3 272.685
belief 1 267.635 2 5.050 3.718e-60
gender 1 4.888 1 0.162 0.027
belief:gender 1 0.162 0 1.197e-13 0.687

In this case, there is little evidence for including the interaction and thus
belief in an afterlife and gender appear to be independent.
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Log-linear Model versus Logistic Regression

Lets suppose that X takes two levels, such as in the afterlife belief example.
Then

log
µ1j

µ2j
= log

πj

1− πj

is the log odds where πj = P [X = 1|Y = Yj].

So log φ12,jk is the log odds ratio comparing Y at level j with Y at level
k. Thus we are effectively modeling the same parameters in the saturated
log-linear model as we are in logistic regression with Y as a categorical
predictor.

It can be shown that inference in the two approaches leads to the same
answer. To exhibit this, lets fit the afterlife belief data both ways
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> summary(afterlife.int)
Call: glm(formula = n ~ belief * gender, family = poisson())

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.99043 0.08248 60.506 <2e-16 ***
beliefYes 1.08491 0.09540 11.372 <2e-16 ***
genderMale -0.09259 0.11944 -0.775 0.438
beliefYes:genderMale -0.05583 0.13868 -0.403 0.687

> summary(afterlife.logit)
Call: glm(formula = agree ~ gen, family = binomial())

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.14074 0.21572 5.288 1.24e-07 ***
gen -0.05583 0.13868 -0.403 0.687
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> anova(afterlife.int, test="Chisq")
Analysis of Deviance Table

Model: poisson, link: log

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 3 272.685
belief 1 267.635 2 5.050 3.718e-60
gender 1 4.888 1 0.162 0.027
belief:gender 1 0.162 0 1.197e-13 0.687

> anova(afterlife.logit, test="Chisq")
Analysis of Deviance Table

Model: binomial, link: logit

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 1 0.16200
gen 1 0.16200 0 8.415e-14 0.68733
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Other Sampling Schemes

So far only tables generated by Poisson sampling schemes have been
considered. However many other schemes lead to the same analysis. These
come by fixing different marginal counts.

• Multinomial sampling: fix n.

In the case we are still modeling the joint probabilities πij. However it is
with 1 multinomial sample instead of rc Poisson samples.

• Product multinomial: fix row (ni+) or column totals (n+j).

In this case of fixing the row totals, each row is considered as a
multinomial sample we are modeling P [Y = yj|X = xi]. So there are r
different independent multinomial samples.

Instead of looking for independence, normally we would instead look for
homogeneity of probabilities (i.e. P [Y = yj|X = xi] = P [Y = yj] for all
xi).
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The justification of these statements can be made by showing that the
likelihoods in these case have equivalent forms when dealing with the πijs.
This relates to the fact that if Y1 ∼ P (µ1) and Y2 ∼ P (µ2) and Y1 and Y2

are independent
Y1|Y1 + Y2 = n ∼ Bin(n, π)

where π = µ1
µ1+µ2

.
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