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Matrix Approach to Regression

Linear Model:

Yi = β0 + β1Xi1 + . . . + βpXip + εi; εi
iid∼ N(0, σ2), i = 1, . . . , n

Yi|Xi1, . . . , Xip
ind∼ N(µi, σ

2)

µ(Yi|Xi1, . . . , Xip) = β0 + β1Xi1 + . . . + βpXip = µi

Var(Yi|Xi1, . . . , Xip) = σ2

For what follows, the inclusion of the intercept will be assumed, though it
need not be.
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This model can be written in matrix notation as

Y = Xβ + ε

where

• Responses Y: n× 1 (rows times cols)

Y =




Y1

Y2
...

Yn



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• Predictors X: n× (p + 1)

X =




1 X11 X12 . . . X1p

1 X21 X22 . . . X2p
... ... ... . . . ...

1 Xn1 Xn2 . . . Xnp




• Regression parameters β: (p + 1)× 1

β =




β0

β1
...

βp




Matrix Approach to Regression 3



• Errors ε: n× 1

ε =




ε1
ε2
...

εn




The corresponding distributional assumptions in the matrix formulation are

ε ∼ Nn(0, σ2In)

Y|X ∼ Nn(Xβ, σ2In)

µ(Y|X) = Xβ

Var(Y|X) = σ2In

where Nn(µ,Σ) is the n-dimensional multivariate normal distribution with
mean vector µ and variance matrix Σ and In is the n × n identity matrix
(Note I’ll often not indicate the dimension of the identity matrix).
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In what follows, it will be assumed that rank(X) = p + 1, which will lead
to a unique solution of least squares criterion

SS(β) =
n∑

i=1

(Yi − β0 − β1Xi1 − . . .− βpXip)2

= (Y −Xβ)T (Y −Xβ)

with respect to β. One way of thinking of this, is that no predictor is a
linear combination of the rest.

The least squares solutions for β satisfy

XTXβ̂ = XTY (Normal Equations)

β̂ = (XTX)−1XTY
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The vector of fitted values satisfy

Ŷ = Xβ̂

= X(XTX)−1XTY

= HY

Geometrically, Ŷ can be thought of the projection of Y onto the subspace
generated by the columns of X.

The matrix H is known as the hat matrix (a n×n matrix) and is important
for many regression calculations and diagnostics (will come back to later).
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The vector of residuals satisfy

e = Y − Ŷ = (I −H)Y

Theorem. Assume that Var(Y) = Σ is a k × k matrix. Then if A is a
l × k matrix, then Z = AY has variance matrix

Var(Z) = AΣAT

Note that if A is a vector (l = 1), when you work out the matrix
multiplication, the result is equivalent to

Var(Z) =
k∑

i=1

a2
iVar(Yi) +

∑

i<j

2aiajCov(Yi, Yj)

This theorem is the multivariate analogue of Var(aY ) = a2Var(Y ).
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Some important variance results based on this result are

1. Var(β̂) = σ2(XTX)−1

2. Var(Ŷ) = σ2H

3. Var(e) = σ2(I −H)

4. Cov(β̂, e) = 0(p+1)×n

5. Cov(Ŷ, e) = 0n×n

assuming that Var(ε) = σ2I (constant variance and uncorrelated).
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The first of these is justified by

Var(β̂) = Var((XTX)−1XTY)

= (XTX)−1XTVar(Y)X(XTX)−1

= (XTX)−1XTσ2IX(XTX)−1

= σ2(XTX)−1XTX(XTX)−1

= σ2(XTX)−1

The others are justified by the facts

• H = HT

• Since H is a projection matrix, H2 = HH = H.
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Another implication of this second fact is that all the linear information in
Y described by X is given by the linear regression.

Lets think about situation where we regress Y on X, which gives residuals
e. Now lets regress e on X, i.e fit the model

e = Xβ∗ + ε∗

and see what the fits and residuals for this second regression are.

• Estimate of β∗:

β̂
∗

= (XTX)−1XTe

= (XTX)−1XT (I −H)Y

= ((XTX)−1XT − (XTX)−1XTX(XTX)−1XT )Y

= (XTX)−1XT − (XTX)−1XT )Y = 0
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• Fits of residuals:

ê = He

= H(I −H)Y

= HY −H2Y

= HY −HY = 0

• Residuals of residuals:

r = e− ê = (I −H)e

= (I −H)(I −H)Y

= (I −H −H + H2)Y

= (I −H)Y = e
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Now lets look at the Puffin example from last time to numerically display
the results implied by these matrix calculations.

> puffin.lm <- lm(nesting ~ grass + soil + angle + distance,
data=puffin)

> puffin.res <- resid(puffin.lm)

> summary(puffin.lm)

Residuals:
Min 1Q Median 3Q Max

-4.0166 -2.1088 0.2293 1.2505 6.9881

Residual standard error: 2.647 on 33 degrees of freedom
Multiple R-Squared: 0.8792, Adjusted R-squared: 0.8645
F-statistic: 60.03 on 4 and 33 DF, p-value: 1.113e-14
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> resid.lm <- lm(puffin.res ~ grass + soil + angle + distance,
data=puffin)

> summary(resid.lm)

Residuals:
Min 1Q Median 3Q Max

-4.0166 -2.1088 0.2293 1.2505 6.9881

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.700e-16 3.185e+00 5.34e-17 1
grass 3.997e-19 1.946e-02 2.05e-17 1
soil 6.538e-18 7.724e-02 8.47e-17 1
angle -1.646e-17 7.780e-02 -2.12e-16 1
distance -4.346e-18 5.747e-02 -7.56e-17 1

Residual standard error: 2.647 on 33 degrees of freedom
Multiple R-Squared: 4.699e-33, Adjusted R-squared: -0.1212
F-statistic: 3.877e-32 on 4 and 33 DF, p-value: 1
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> max(abs(fitted(resid.lm)))
[1] 4.440892e-16

> max(abs(puffin.res - resid(resid.lm)))
[1] 4.440892e-16

So the estimated βs and fitted residuals from this second regression are all
0, as is the difference between the residuals from the two regressions (up to
the numerical precision of R).

So an implication of these general results, is that if you see pattern in the
residuals, say for example some curvature in the plot of residuals vs one of
the predictors, you will need to fit a different model.

This could be done by transforming Y , adding new predictors, or
transforming current predictors (add in X2 for example).

The usual estimate of σ2 can be written as

σ̂2 =
eTe

n− p− 1
=

YT (I −H)Y
n− p− 1

= MSE
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Note that all of the results seen so far only depend on the moment
assumptions

µ(Y|X) = Xβ

Var(Y|X) = σ2In

and not on normality. If we are willing to assume that

Y|X ∼ Nn(Xβ, σ2In)

then due to

Theorem. Let Y ∼ Nk(µ,Σ) and let A be an k × l matrix. Then
Z ∼ Nl(Aµ, AΣAT ).

the following additional results hold
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1. β̂ ∼ Np+1(β, σ2(XTX)−1)

2. X0β̂ ∼ N1(X0β, σ2X0(XTX)−1XT
0 ). X0β̂ is the estimated mean

response for predictor vector X0.

3. Ŷ ∼ Nn(Xβ, σ2H)

4. e ∼ Nn(0, σ2(I −H))

5. SSE = eTe = YT (I −H)Y ∼ σ2χ2
n−p−1

6. β̂ is independent of σ̂2 since Cov(β̂, e) = 0

The 1st, 2nd, and 5th results are needed to justify the t procedures used on
β̂ and for prediction intervals and confidence intervals for mean response,
e.g.

β̂i − βi

SE(β̂i)
∼ tn−p−1
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In addition, the components of the usual sums of squares decomposition

SST = SSR + SSE

can be easily calculated by

SSR = Y T

[
H − 1

n
J

]
Y

SSE = Y T (I −H)Y

SST = Y T

[
I − 1

n
J

]
Y

where J is a n× n matrix of all 1’s.
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Regression Diagnostics

As mentioned earlier, components of the Hat matrix H can be used for
many diagnostic purposes.

The components of the vector h = diag(H) are known as the leverages.
Note that in the case when there is only a single predictor, these values
correspond to the well known formula

hi =
1

n− 1

[
Xi − X̄

sx

]2

+
1
n

=
(Xi − X̄)2∑
(Xi − X̄)2

+
1
n
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The leverages measure how far away the
predictors are away from the average of
the predictors, accounting for the correlation
amongst the predictors, on a relative scale. An
observation could have a high leverage (such
as the red point), even though it is not extreme
for each variable individually.

It can be shown that

1
n
≤ hi ≤ 1

and
n∑

i=1

hi = p + 1

(assuming that there is an intercept in the model).
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By examining the structure of the matrix multiplication Ŷ = HY, it is
evident that

Ŷj = hjjYj +
∑

i 6=j

hjiYi

(where hji is the element from row j and column i of H) so the leverages
give some information about how much information each observation has
on its own fit (as hjj = hj). These influence ideas can be expanded on.

For example, based on the earlier variance results,

Var(Ŷi) = σ2hi

Var(ei) = σ2(1− hi)

So values with high leverages will tend to have smaller residuals.
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This is the reason that studentized residuals

studresi =
ei

σ̂
√

1− hi

are usually better to check for possible outliers.

Another alternative for checking for outliers are deleted residuals, which are
given by

di = Yi − Ŷi(i)

where Ŷi(i) is the fit of observation i when it is not included in the fitting
of the model (use the other n− 1 observations to estimate β.)

It ends up you don’t need to rerun the regression as

di =
ei

1− hi

where ei and hi are taken from the full regression.

Regression Diagnostics 21



To check for outliers, the studentized deleted residual

ti =
di

SE(di)
=

ei

σ̂(i)

√
1− hi

can be compared to critical values a tn−p−1 distribution. σ̂2
(i) is the estimate

of σ2 when observation i is not used for fitting. It can be calculated from
the main regression by the relationship

(n− p− 1)σ̂2 = (n− p− 2)σ̂2
(i) +

e2
i

1− hi

In addition, h can be used to search for potentially influential observations.
For example, values of hi > 2(p+1)

n are often considered as outliers in their
X values.
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In addition, Cook’s Distance, one common measure of influence depends on
h

Di =
n∑

i=j

(Ŷj(i) − Ŷj)2

(p + 1)σ̂2

=
e2

i

(p + 1)σ̂2

hi

(1− hi)2

where Ŷj(i) is the jth fitted value from a fit that excludes observation i.

Cook’s distance measures the overall influence an observation has on the
overall fit.

The second version of the formula shows that this measure depends on the
residual and the leverage.
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An observation could have a large Di value if

• Large residual and a moderate leverage

• Large leverage and moderate residual

• Large residual and leverage

Di larger that 1 are often indicative of large influence. A Di which is much
larger than the rest, but less than 1, is also an indicator.
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Another useful measure of influence is DFFITS, which just measures the
influence that observation i has on its own fit. Its formula is given by

DFFITSi =
Ŷi − Ŷi(i)

σ̂(i)

√
hi

It can be more easily calculated by the formula

DFFITSi = ei

[
n− p− 2

SSE(1− hi)− e2
i

]1/2 (
hi

1− hi

)1/2

= ti

(
hi

1− hi

)1/2

For small or moderate sized datasets, DFFITS exceeding 1 in magnitude are
often considered large. For large datasets 2

√
(p + 1)/n is the more usual

cutoff.
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Another measure of influence is DFBETAS, which measures the influence
of each of the observations on the estimated βs. They are given by

DFBETASk(i) =
β̂k − β̂k(i)

σ̂(i)
√

ck
; k = 0, . . . , p

where ck is the kth diagonal element of (XTX)−1.

This measures the influence of observation i on the estimate of βk

Large values of DFBETAS are 1 for small or medium sized data sets and
2/
√

n for large ones.

Note that there is a tie between Cook’s Distance and DFBETAS as

Di =
(β̂ − β̂(i))TXTX(β̂ − β̂(i))

(p + 1)σ̂2

To get these various diagnostic measures in R, see help(influence.measures)
for more details
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