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Complete Tables with Zero Entries

In contingency tables, it is possible to have zero entries in a table. There
are two ways this can occur

• Structural zeros: These occur when the sampling scheme forces them to
be 0. For example in the Wave Damage to Cargo Ship example, they
classified the number of damage incidents by the 3 factors.

– Ship type: A - E
– Year of construction: 1960-64, 1965-69, 1970-74, 1975-1979
– Period of operation: 1960-74, 1975-1979

In this example, any cell involving operation period = 1960-1974 and
construction year = 1975-1979 must have a count = 0. Actually there is
one more structural zero. The cell for ship type = E, construction year
= 1960-1964, and operation period = 1975-1979 had service time = 0,
which forces the number of damage incidents to 0.
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These situations are easily handled by just removing these observations
from the data set. Note that the total number of observations won’t be
IJK but IJK − νs, where νs is the number of structural zeros in the
data set. In this example νs = 0, one for each ship type plus the one cell
that had a 0 service times, even though it could have been positive. So
the effective number of observations is 34 = 5× 4× 2− 6.

> summary(wave.glm)

Call:
glm(formula = Damage ~ Type + Construct + Operation,

family = poisson(), data = wave2, offset = log(Service))

Null deviance: 146.328 on 33 degrees of freedom
Residual deviance: 38.695 on 25 degrees of freedom
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• Sampling zeros: Cell counts = 0 can also occur at random. This will
tend to happen when µ is small (equivalently when π is close to 0)

Example: Food poisoning (Bishop, Fienberg, & Holland, pp 90-91)

The following data are from and epidemiologic study following an
outbreak of food poisoning at an outing held for personnel of an
insurance company. Questionnaires were completed by 304 of the 320
persons attending. Of the food eaten, interest focused on potato salad
and crabmeat.

Crabmeat No Crabmeat

Potato Salad Yes No Yes No Total

Ill 120 4 22 0 146

Not Ill 80 31 24 23 158

There is no reason, apriori, to assume that people who got ill must have
eaten at least one of the potato salad or crabmeat.
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Model df X2
p X2 µ̂122

(IP, IC, PC) 1 1.70 2.74 1.08

(IP, IC) 2 7.21 7.64 0.60

(IP, PC) 2 5.09 6.48 1.59

(IC, PC) 2 44.35 53.66 7.33

The 0 cell for these models doesn’t seem to cause a problem. For
example, for the model (IP, IC, PC)

> summary(poison.ic.ip.cp)
Call: glm(formula = count ~ .^2, family = poisson(),

data = poison)

Deviance Residuals:
1 2 3 4 5 6

-0.09857 0.59995 0.23481 -1.47176 0.12164 -0.19230
7 8

-0.21783 0.22947
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Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.0873 0.2102 14.686 < 2e-16 ***
illYes -3.0075 0.5676 -5.299 1.17e-07 ***
crabYes 0.3811 0.2697 1.413 0.1577
potatoYes 0.1349 0.2837 0.476 0.6343
illYes:crabYes 0.6097 0.3170 1.923 0.0544 .
illYes:potatoYes 2.8259 0.5362 5.270 1.36e-07 ***
crabYes:potatoYes 0.7651 0.3432 2.229 0.0258 *
---
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 295.2526 on 7 degrees of freedom
Residual deviance: 2.7427 on 1 degrees of freedom
AIC: 53.074

Number of Fisher Scoring iterations: 5
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Everything looks fine here.

Now lets fit the saturated model.

> summary(poison.icp)

Call:
glm(formula = count ~ .^3, family = poisson(), data = poison,

epsilon = 1e-16, maxit = 50)

Deviance Residuals:
[1] 0 0 0 0 0 0 0 0

To be expected since µ̂ijk = nijk
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Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.135e+00 2.085e-01 15.037 <2e-16 ***
illYes -5.544e+01 6.711e+07 -8.26e-07 1.000
crabYes 2.985e-01 2.752e-01 1.085 0.278
potatoYes 4.256e-02 2.918e-01 0.146 0.884
illYes:crabYes 5.339e+01 6.711e+07 7.96e-07 1.000
illYes:potatoYes 5.535e+01 6.711e+07 8.25e-07 1.000
crabYes:potatoYes 9.055e-01 3.604e-01 2.512 0.012 *
illYes:crabYes:potYes -5.290e+01 6.711e+07 -7.88e-07 1.000
---
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 2.9525e+02 on 7 degrees of freedom
Residual deviance: 1.1546e-14 on 0 degrees of freedom
AIC: 52.332

Number of Fisher Scoring iterations: 50
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This doesn’t look so good. The glm function didn’t converge here, as
the number of iterations happens to be the maxit. Also notice that
some of the standard errors for the λs are huge.

It ends up that sampling zeros can cause problems with estimating the
λs in some cases. Whether a problem occurs depends on the model to
be fit and the layout of the zeros in the table.

Note that even though there may be problems with estimating the λs,
the model may still be well defined in terms of the πs and odds ratio
type measures (maybe going to more complicated structures)

Lets look at a couple of 2 × 2 table examples and fit the hypothetical
examples and try to fit the independence model in each case

Observed: [
20 0
0 5

] [
20 5
0 0

]
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Fitted:
[

16 4
4 1

] [
20 5
0 0

]

If we use the upper left cell as the reference cell, the MLEs for the λs
satisfy

λ̂ = log µ̂11

λ̂X = log µ̂22 + log µ̂21 − log µ̂12 − log µ̂11

λ̂Y = log µ̂22 − log µ̂21 + log µ̂12 − log µ̂11

where

µ̂ij =
ni+n+j

n
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For the first table we get

λ̂ = log 16 = 2.7726

λ̂X = log 1 + log 4− log 4− log 16 = −1.3863

λ̂Y = log 1− log 4 + log 4− log 16 = −1.3863

However for the second table we get

λ̂ = log 20 = 2.9957

λ̂X = log 0 + log 0− log 5− log 20 = −∞
λ̂Y = log 0− log 0 + log 5− log 20 = −∞

In this case the fitted cells with 0 are causing trouble.
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Lets consider another example

Z1 Z2

Y1 Y2 Y1 Y2

X1 0 b e f

X2 c d g 0

Lets consider the model (XY, XZ, YZ). Under this model

µ̂ij+ = nij+ µ̂i+k = ni+k µ̂+jk = n+jk

Now suppose that µ̂111 = ∆ > 0. Then the table of expected counts
must look like
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Z1 Z2

Y1 Y2 Y1 Y2

X1 ∆ b−∆ e−∆ f + ∆

X2 c−∆ d + ∆ g + ∆ −∆

Which gives a negative µ̂. Thus µ̂111 = µ̂222 = 0 which further implies
µ̂ijk = nijk.

In addition the λ̂s aren’t well defined as the calculations for many of
them involve log 0.

If we take an example of this table we get
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Call:
glm(formula = count ~ (X + Y + Z)^2, family = poisson(),

data = zero3)
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -23.81 46570.93 -0.001 1
X2 25.42 46570.93 0.001 1
Y2 26.80 46570.93 0.001 1
Z2 26.11 46570.93 0.001 1
X2:Y2 -25.70 46570.93 -0.001 1
X2:Z2 -25.93 46570.93 -0.001 1
Y2:Z2 -25.70 46570.93 -0.001 1

In this case the intercept is actually log 0 = ∞. The calculated result is
a result of the convergence criterion used in glm and the finite precision
of calculations in R.

Note that the parameterization selected can’t be used to solve the
problem. Different parameterizations will exhibit the problem differently,
but it will always be there.
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Effects on the Degrees of Freedom

In general, the degrees of freedom are determined by

df = Te − Tp

where Te is the number of cells in the table where µ is estimated and
Tp is the number of parameters to be fitted. Note this is just the same
formula as before.

If there are no cells with fitted zeros, this is correct formula.

However this is not correct if there are fitted zeros which can occur two
ways

1. λ terms in the model cannot be estimated due to the arrangements of
sampling zeros, even though the specifying configurations may have
all non-zero values.

2. Zero cells lead to empty cells for the specifying configuration.
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In the case of fitted zeros, the formula for degrees of freedom needs to
be modified to

df = (Te − ze)− (Tp − zp)

where ze is the number of cells with fitted zeros and zp is the number of
parameters that can’t be estimated.

So for the artificial 3-way table with the model (XY, XZ, YZ)

Te = 8 Tp = 7 ze = 2 zp = 1

giving
df = (8− 2)− (7− 1) = 0

which seems reasonable since µ̂ijk = nijk for this model.

For the

Note that zp is often difficult to determine. For this problem it happens
to be 1. It ends up you can only fit 2 of the 3 two factor interactions at
one time.
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Separating Hyperplanes in Logistic Regression
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There is a related problem in logistic
regression where is it not possible to
get parameter estimates.

The plot to the right shows an
example of when the problem occurs.

> sp.glm <- glm(ysp ~ xsp, family=binomial())
Warning messages:
1: algorithm did not converge in:

glm.fit(x = X, y = Y, weights = weights, start = start,
etastart = etastart,

2: fitted probabilities numerically 0 or 1 occurred in:
glm.fit(x = X, y = Y, weights = weights, start = start,

etastart = etastart,
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> summary(sp.glm)

Call: glm(formula = ysp ~ xsp, family = binomial())

Deviance Residuals:
Min 1Q Median 3Q Max

-6.008e-05 -2.107e-08 0.000e+00 2.107e-08 5.200e-05

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -234.32 119856.80 -0.002 0.998
xsp 50.93 26078.75 0.002 0.998

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 6.9315e+01 on 49 degrees of freedom
Residual deviance: 6.7379e-09 on 48 degrees of freedom
AIC: 4
Number of Fisher Scoring iterations: 25
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In this example the data was generated by y = I(x > 5).

When you try to fit this example, the iterates of β̂1 in the IRSL algorithm
will continue to increase without bound. The only reason that R stopped
and gave an answer is that the glm function has a maxit option which
forces the function to terminate.
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When there is a single predictor x, this
problem will exhibit itself whenever
you have a dataset with the property

y = I(x > xc) or y = I(x < xc)

When there is a higher dimensional
predictor (more xs), this problem can
also occur. In two dimensions, the
problem occurs if you can draw a line
through the scatterplot of the predictors and have all the successes on one
side and all the failures on the other.
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In 3 dimensions, you look for a separating plane and in 4 and higher
dimensions you look for separating hyperplanes.

Usually this problem occurs when you have sparce data, particularly in the
range of xs where π(x) changes alot. When it comes to study design, you
need to choose level of the predictors and number of observations so that
the sample proportions should be bounded away from 0 and 1.
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Direct Estimates

While for most purposes today being able to get direct estimates of µ̂s is
less important today, due to modern computing hardware and software, it
does have its uses.

For example, Monte Carlo techniques may require generation of these fits
many times, and it may be quicker to generate them directly that to use
iterative procedures such as iteratively reweighted least squares.

As mentioned before, not every log linear model has direct estimates.
There is a simple algorithm that will determine whether a model has direct
estimates based on the sufficient configuration (the notation discussed last
time for describing models). The algorithm involves the following steps:
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1. Relabel any group of variables that always appear together as a single
variable.

2. Delete any variable that occurs in every configuration.

3. Delete any variable that occurs in every configuration.

4. Remove any redundant configuration.

5. Repeat steps 1 - 4 until

(a) No more than 2 configurations remain =⇒ Direct Estimates
(b) No further steps possible =⇒ No Direct Estimates
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Examples:

1. (AB, AC, BD)

• 3−→ (AB, AC, B) – D occurs only once

• 4−→ (AB, AC) – B redundent [in AB]

• 3−→ (AB, A) – C occurs only once

• 4−→ (AB) – A redundent [in AB]
• ≤ 2 configurations =⇒ Direct Estimates

2. (AB, AC, BC)

• Nothing can be relabeled by step 1
• Nothing occurs in every configuration – drop nothing
• Nothing occurs in just on configuration – drop nothing
• No redundent configurations – drop nothing
• No further steps possible and > 2 configurations =⇒ No Direct

Estimates
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3. (ABC, BCD, AD)

• 1−→ (A[BC]’, [BC]’D, AD) = (AE, ED, AD) – relabel AB as E
• No further steps possible – this is equivalent to example 2.
• > 2 configurations =⇒ No Direct Estimates

4. (BCE, ACF, EG, ABD, ABC)

• 3−→ (BCE, AC, E, ABD, ABC) – F & G removed as they only occur
once

• 4−→ (BCE, ABD, ABC) – AC [part of ABC] & E [part of BCE] are
now redundant

• 3−→ (BC, AB, ABC) – D & E occur only once

• 4−→ (ABC) – AB & BC both occur in ABC
• ≤ 2 configurations =⇒ Direct Estimates
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Now that we can figure out when direct estimates occur, what are they?
There is a simple scheme to construct them

1. Numerator has entries from the sufficient configuration

2. Denominator has entries from redundant configurations due to
overlapping

3. Powers of ns to ensure right order of magnitude

Note: When considering the sufficient configuration, there should be no
components that should be eliminated by step 4 of the algorithm. So if the
model (ACD, BCD, A) is given, the sufficient configuration is (ACD, BCD).
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Examples:

1. (ACD, BCD) – Conditional on C & D, A &
B are independent

µ̂ijkl =
ni+kln+jkl

n++kl

2. (AB, AC, BD) – Many conditional
independence relationships

µ̂ijkl =
nij++ni+k+n+j+l

ni+++n+j++
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Slight notation change: Let nX correspond to fixing the levels of variables
listed in X and adding over the other variables. For example in a model
with variables A, B, C, and D,

nAB = nij++ nC = n++k+ n = n++++

3. (ABC, ABD, ABE) – C, D, and E are mutually
independent conditional on A and B.

µ̂ =
nABCnABDnABE

(nAB)2

4. (BCE, ACF, EG, ABD, ABC)

µ̂ =
nABCnABDnBCEnACFnEG

nABnACnBCnE
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This algorithm is related to the fact that X is an element of the sufficient
configuration describing a model, then

µ̂X = nX

Another way of thinking of this, the sufficient configuration describes which
marginal tables are fixed when considering the corresponding estimated
table for a model.
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