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Fixed Effects Versus Random Effects

Lets consider normal based one-away ANOVA model

yij = µ + αi + εij

In most (all?) the cases we have dealt with before along this line, it has
been assumed that the categorical factors used for prediction have been
fixed effects. In these cases, the levels have been specifically chosen. For
example, car type and vehicle age in the insurance example fit into this. In
these cases, the parameters to be estimated are unknown constants.

However, there are other cases where we are interested in a large population
of possible levels of a treatment factor and the levels used in the study are
a random sample from this population.
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Example: Clean Wool Experiment (Dean & Vos, Example 17.2.2)

Raw wool contains varying amounts of grease, dirt, and foreign material
which must be removed before manufacturing begins. The purchase price
and customs levy of a shipment are based on the actual amount of wool
present after cleaning (the clean content). The clean content (clean)is
expressed as the percentage the weight of the clean wool is of the original
weight of the raw wool.

The treatment factor was wool bale (bale) and its levels were the entire
population of bales in a particular shipment. Seven bales were randomly
sampled and 4 core samples from each bales had their clean content
measures.

In this case bale is our treatment factor, though we aren’t really interested
in these particular 7 bales. The interest is in how much bales can differ.
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Example: Ice Cream Experiment (Dean & Vos, Example 17.3.1)

An experiment was run to examine whether or not different flavours of
ice cream melt at different rates. A random sample of three flavours
was selected from a large populations offered to the customer by a single
manufacturer in May 1986. It is not obvious that the selected flavours are
representative of all possible ice cream flavours, since some may include an
ingredient that inhibits melting. The theoretical population is therefore the
population of all flavours that could be made with ingredients similar to
those available.

Three flavours of ice cream were stored in the same freezer in similar sized
containers. For each observation, one teaspoonful of ice cream was taken
from the freezer, transferred to a plate, and the melting time at room
temperature was observed to the nearest second. Eleven observations were
taken on each flavour and the order of observations was also recorded.

In this cases, we want to describe the variability in melting times between
the different flavours.

Fixed Effects Versus Random Effects 4



80
0

90
0

10
00

11
00

Flavour

M
el

tin
g 

T
im

e

1 2 3

Fixed Effects Versus Random Effects 5



One-way Random Effects Model

We want to fit a model of the form

yij = µ + αi + εij

where the αis describe the variability between the different level of the
factor of interest (e.g. bale or flavour) and the εijs describe the variability
of observations within a factor level (often measurement error).

As we often consider the factor levels a sample from a population, its
reasonable to consider the αis as draws from a population. The usual
assumptions and model fit are

yij = µ + αi + εij

αi
iid∼ N(0, σ2

α)

εij
iid∼ N(0, σ2)
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where the αis and εij are all mutually independent.

The assumption that E[αi] = 0 is needed for estimation and is similar to
the constraints needed in the fixed effects case.

The distributional properties of the observations is a bit different than the
fixed effects case. To start,

E[yij] = E[µ + αi + εij]

= E[µ] + E[αi] + E[εij]

= µ

Next,

Var(yij) = Var(µ + αi + εij)

= Var(αi) + Var(εij) since αi and εij are independent

= σ2
α + σ2
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Also, for two observations taken under the same factor level i,

Cov(yij, yik) = Cov(µ + αi + εij, µ + αi + εik)

= Cov(αi, αi) + Cov(αi, εij) + Cov(αi, εik) + Cov(εij, εik)

= Var(αi) = σ2
α

So yij and yik are correlated with

Corr(yij, yik) =
σ2

α

σ2
α + σ2

In some settings, this is known as the interclass correlation.

If two observations come from different treatment factor levels

Cov(yij, ylk) = 0
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So
yij ∼ N(µ, σ2

α + σ2)

The quantities σ2
α and σ2 are often referred to as variance components.

Note that one-way random effects model is a special case of the model

yij ∼ N(µ, τ2)

Cov(yij, yi′j′) =

{
ρτ2 if i = i′ and j 6= j′

0 if i 6= i′

where ρ ∈ (ρmin, 1) where ρmin < 0 and depends on the number of
observation within each factor level.

The one-way random effects model has to have a non-negative correlation
between observations within the same factor level.
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Estimation in the One-way Random Effects Model

Assume that there are ν factor levels observed in the data and that for
factor level i, there are mi observations.

In this model, there are three parameters to estimate: µ, σ2
α and σ2

• µ: Since
E[ȳ++] = µ

the usual estimate of µ is ȳ++, the average of all the observations.

• σ2: Let

SSE =
ν∑

i=1

mi∑

j=1

(yij − ȳi+)2

=
ν∑

i=1

mi∑

j=1

y2
ij +

ν∑

i=1

miȳ
2
i+
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be the usual SSE in a one-way fixed effects ANOVA.

It can be shown that

E[y2
ij] = Var(yij) + (E[yij])2 = σ2

α + σ2 + µ2

and

E[ȳ2
i+] = Var(ȳi+) + (E[ȳi+])2 = σ2

α +
σ2

mi
+ µ2

Then is can be shown that

E[SSE] =
ν∑

i=1

mi∑

j=1

(
σ2

α + σ2 + µ2
)

+
ν∑

i=1

mi

(
σ2

α +
σ2

mi
+ µ2

)

= nσ2 − νσ2 where n =
∑

mi

= (n− ν)σ2
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So the MSE

MSE =
SSE

n− ν
is an unbiased estimator of σ2

• σ2
α: Again mimicing the analysis from the one-way fixed effects ANOVA,

let

SST =
ν∑

i=1

mi(ȳi+ − ȳ++)2

=
ν∑

i=1

miȳ
2
i+ + nȳ2

++

be the usual treatment sums of squares in a one-way fixed effects ANOVA.

It can be shown that

E[ȳ2
++] = Var(ȳ++) + (E[ȳ++])2 =

∑
m2

i

n2
σ2

α +
σ2

n
+ µ2
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Then is can be shown that

E[SST ] =
ν∑

i=1

mi

(
σ2

α +
σ2

mi
+ µ2

)
− n

(∑
m2

i

n2
σ2

α +
σ2

n
+ µ2

)

=
(

n−
∑

m2
i

n

)
σ2

α − (ν − 1)σ2

Since MST = SST
ν−1 ,

E[MST ] = cσ2
α + σ2

where

c =
n2 −∑

m2
i

n(ν − 1)

If all the mi are equal to m, then n = νm and c = m

Thus an unbiased estimate of σ2
α is

MST −MSE

c
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It is possible for this estimator to give a negative estimate even though
σ2

α cannot be.

This is something that could happen when σ2
α is close to 0. If MSE is

much smaller than MST , you probably want to question the adequacy
of the model.

So if desired, we can get most of what we want from the standard one-way
ANOVA analysis. Though you have to do some additional work to get c if
the number of observations on each factor level varies.

Another approach in R is with the lme4 package. Its a general package for
fitted mixed models, which include random effects models. In fact it will
handle generalized linear mixed models, so the normal assumptions can be
relaxed

> library(lme4)
Loading required package: Matrix
Loading required package: lattice
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> wool.re <- lmer(clean ~ 1 + (1 | bale) , data=wool)

> wool.re
Linear mixed-effects model fit by REML
Formula: clean ~ 1 + (1 | bale)

Data: wool
AIC BIC logLik MLdeviance REMLdeviance

136.8586 139.523 -66.4293 133.7433 132.8586
Random effects:
Groups Name Variance Std.Dev.
bale (Intercept) 1.1833 1.0878
Residual 6.2606 2.5021
number of obs: 28, groups: bale, 7

Fixed effects:
Estimate Std. Error t value

(Intercept) 58.03643 0.62661 92.62
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> icecream.re <- lmer(time ~ 1 + (1 | flavour) , data=icecream)

> icecream.re
Linear mixed-effects model fit by REML
Formula: time ~ 1 + (1 | flavour)

Data: icecream
AIC BIC logLik MLdeviance REMLdeviance

385.7047 388.6978 -190.8524 391.3986 381.7047
Random effects:
Groups Name Variance Std.Dev.
flavour (Intercept) 7247.6 85.133
Residual 6781.9 82.352
number of obs: 33, groups: flavour, 3

Fixed effects:
Estimate Std. Error t value

(Intercept) 950.758 51.199 18.570

Estimation in the One-way Random Effects Model 16



The general structure of the command is to described the fixed effects in
the model. In these examples, there is only the intercept, indicated by 1.
Then the terms involving the random effects come. In this case we are
looking at describing deviations around the intercept, which are described
by (1 | bale) and (1 | flavour).

As part of the output, it gives estimates and standard errors for the fixed
effects. Note that these depend on both variance components, not just σ2

as in the fixed effects case.

For example,

Var(y++) = Var
(∑

miαi + ε++

)

=
∑

m2
iσ

2
α + nσ2

If all the mi = m (as in the two examples)

Var(ȳ++) =
mσ2

α + σ2

n
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Testing in the One-way Random Effects Model

In the this model, to examine whether there is a treatment effect, we need to
examine σ2

α. In the testing framework, we need to examine the hypotheses

H0 : σ2
α = 0 vs HA : σ2

α > 0

It ends up that it’s possible to show that

SST

cσ2
α + σ2

∼ χ2
ν−1

and
SSE

σ2
∼ χ2

n−ν

and that SST and SSE are independent, so under the null hypothesis

MST

MSE
∼ Fν−1,n−ν
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So the standard F test from the one-way ANOVA gives us the answer we
want.

For the two examples

> anova(wool.fe, test="F")
Analysis of Variance Table

Response: clean
Df Sum Sq Mean Sq F value Pr(>F)

bale 6 65.963 10.994 1.756 0.1573
Residuals 21 131.472 6.261

> anova(icecream.fe, test="F")
Analysis of Variance Table

Response: time
Df Sum Sq Mean Sq F value Pr(>F)

flavour 2 173010 86505 12.755 9.799e-05 ***
Residuals 30 203456 6782
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Confidence Intervals on the Variance Components

Often is useful to get confidence interval on various combinations of the
variance components

• σ2: This is the easiest situation, as the problem reduces to the fixed
effects case. The interval is based on the pivotal quantity

SSE

σ2
∼ χ2

n−ν

A one sided upper confidence bound is

σ2 ≤ SSE

χ2∗
1−α

where
P [χ2

n−ν ≥ χ2∗
1−α] = 1− α
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Similarly a two-sided confidence interval is given by

SSE

χ2∗
α/2

≤ σ2 ≤ SSE

χ2∗
1−α/2

• σ2
α/σ2: We can get a handle on this based on the result mentioned in

testing
MST

MSE(cσ2
α/σ2 + 1)

∼ Fν−1,n−ν

Thus

P

[
F ∗1−α/2 ≤

MST

MSE(cσ2
α/σ2 + 1)

≤ F ∗α/2

]
= 1− α

Rearranging the left side gives

cσ2
α

σ2
≤ MST

MSE F ∗1−α/2

− 1
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and similarly for the right side

cσ2
α

σ2
≥ MST

MSE F ∗α/2

− 1

Combining these give the interval

1
c

[
MST

MSE F ∗α/2

− 1

]
≤ σ2

α

σ2
≤ 1

c

[
MST

MSE F ∗1−α/2

− 1

]

Note that if MST isn’t much larger than MSE, the left endpoint could
be less than 0.

For the wool example, a 90% interval is

(
1
4

[
1.756
2.572

− 1
]

,
1
4

[
1.756
0.259

− 1
])

= (−0.079, 1.447)
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So here is a case with a negative left endpoint. This shouldn’t be two
surprising, since we couldn’t reject σ2

α = 0 earlier.

For the ice cream example, a 90% interval is

(
1
4

[
12.775
3.32

− 1
]

,
1
4

[
12.775
0.0513

− 1
])

= (0.258, 22.513)

This interval is very wide, suggesting that σalpha2 could only be a
quarter of σ2 or it could be 22 times larger. This shouldn’t be too
surprising, as we don’t have much information to estimate σalpha2 since
only three flavours were chosen.

In trying to estimate a quantity like this, you need to find a balance
between the number of levels examined and observations per level.
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• σ2
α: There are a number of procedures available for obtaining approximate

confidence intervals for this variance. Unlike the other two situations,
there are not nice exact distributional results to base a confidence interval
on.

One popular approach is the following. Let σ̂2
α be the estimate of σ2

α

discussed earlier

σ̂2
α =

MST −MSE

c

The exact distribution of σ̂2
α is that of a linear combination of independent

χ2s. While this distribution is not standard, it can be shown that σ̂2
α/σ2

α

can be well approximated by a χ2
df/df where

df =
(MST −MSE)2

MST 2

ν−1 + MSE2

n−ν
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Another way of thinking of this, is that

dfσ̂2
α

E[σ̂2
α]

approx.∼ χ2
df

Unraveling this gives an approximately confidence interval for σ2
α of

(
dfσ̂2

α

χ2∗
α/2

,
dfσ̂2

α

χ2∗
1−α/2

)

So for the ice cream example

df =
(86504.9− 6781.9)2

86504.92

2 + 6781.9
30

= 1.7
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This gives a 90% interval for σ2
α of

(
1.7× 7247.5

5.3
,
1.7× 7247.5

0.07

)
= (2324.7, 176012.0)

If we take square roots and divide by 60 to convert to minutes, a
90% confidence interval for the standard deviation of melting times is
approximately (0.8, 7) minutes.
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Checking Assumptions

As in the fixed effects case, we should check our modeling assumptions.
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To check assumptions on the εijs is
easy. We can define residuals by

eij = yij − ȳi+

and check for outliers, constant
variance, independence, and normality
by standard techniques. (Note
that this isn’t what you get with
resid(lmer.object). I believe
these are based on BLUEs of µ + αi.
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To check assumptions on the αis, we
can base this on

ȳi+ ∼ N(µ, σ2
α + σ2/mi)

So if all mi = m, we can
do a normal scores plot of the
yi+s. If the normality assumption
is reasonable, these means should
lie approximately on a straight line
with x-intercept at about µ and
slope about

√
σ2

α + σ2/m. The
normality assumption is important as
the procedures described are not robust to non-normality of the random
effects. Unfortunately, this is often difficult to do as there often will not be
many levels.

The ȳi+ can also be used to look for outliers as they can be easily
standardized.
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So in this example, there appears to be a variance problem in bale 1 and
possibly extreme means for bales 1 and 7. Possibly there are multiple
subpopulations here, which would be one possible explanation for the plots.
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