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Diagnostic Example

Body Fat Prediction

20 healthy females 25-34 years old were studied to come up with a predictive
model for body fat based on simple measurements as the gold standard
measurement is time consuming and expensive.

Response variable: Bodyfat - determined by body immersion in water

Predictor variables:

• Tricep - Triceps Skinfold Thickness

• Thigh - Thigh Circumference

• Midarm - Midarm Circumference

In the following figure, the plotting symbol is the observation number.
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> cor(bodyfat)
Tricep Thigh Midarm Bodyfat

Tricep 1.0000 0.92384 0.45778 0.8433
Thigh 0.9238 1.00000 0.08467 0.8781
Midarm 0.4578 0.08467 1.00000 0.1424
Bodyfat 0.8433 0.87809 0.14244 1.0000

Lets fit the the model with Tricep and Thigh used to predict Bodyfat.

> bodyfat2.lm <- lm(Bodyfat ~ Tricep + Thigh, data=bodyfat)
>
> summary(bodyfat2.lm)

Call:
lm(formula = Bodyfat ~ Tricep + Thigh, data = bodyfat)

Residuals:
Min 1Q Median 3Q Max

-3.9469 -1.8807 0.1678 1.3367 4.0147
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -19.1742 8.3606 -2.293 0.0348 *
Tricep 0.2224 0.3034 0.733 0.4737
Thigh 0.6594 0.2912 2.265 0.0369 *
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 2.543 on 17 degrees of freedom
Multiple R-Squared: 0.7781, Adjusted R-squared: 0.7519
F-statistic: 29.8 on 2 and 17 DF, p-value: 2.774e-06
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>Influence measures of
lm(formula = Bodyfat ~ Tricep + Thigh, data = bodyfat) :

dfb.1_ dfb.Trcp dfb.Thgh dffit cov.r cook.d hat inf
1 -3.05e-01 -1.31e-01 2.32e-01 -3.66e-01 1.361 4.60e-02 0.2010
2 1.73e-01 1.15e-01 -1.43e-01 3.84e-01 0.844 4.55e-02 0.0589
3 -8.47e-01 -1.18e+00 1.07e+00 -1.27e+00 1.189 4.90e-01 0.3719 *
4 -1.02e-01 -2.94e-01 1.96e-01 -4.76e-01 0.977 7.22e-02 0.1109
5 -6.37e-05 -3.05e-05 5.02e-05 -7.29e-05 1.595 1.88e-09 0.2480 *
6 3.97e-02 4.01e-02 -4.43e-02 -5.67e-02 1.371 1.14e-03 0.1286
7 -7.75e-02 -1.56e-02 5.43e-02 1.28e-01 1.397 5.76e-03 0.1555
8 2.61e-01 3.91e-01 -3.32e-01 5.75e-01 0.780 9.79e-02 0.0963
9 -1.51e-01 -2.95e-01 2.47e-01 4.02e-01 1.081 5.31e-02 0.1146
10 2.38e-01 2.45e-01 -2.69e-01 -3.64e-01 1.110 4.40e-02 0.1102
11 -9.02e-03 1.71e-02 -2.48e-03 5.05e-02 1.359 9.04e-04 0.1203
12 -1.30e-01 2.25e-02 7.00e-02 3.23e-01 1.152 3.52e-02 0.1093
13 1.19e-01 5.92e-01 -3.89e-01 -8.51e-01 0.827 2.12e-01 0.1784
14 4.52e-01 1.13e-01 -2.98e-01 6.36e-01 0.937 1.25e-01 0.1480
15 -3.00e-03 -1.25e-01 6.88e-02 1.89e-01 1.775 1.26e-02 0.3332 *
16 9.31e-03 4.31e-02 -2.51e-02 8.38e-02 1.309 2.47e-03 0.0953
17 7.95e-02 5.50e-02 -7.61e-02 -1.18e-01 1.312 4.93e-03 0.1056
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18 1.32e-01 7.53e-02 -1.16e-01 -1.66e-01 1.462 9.64e-03 0.1968
19 -1.30e-01 -4.07e-03 6.44e-02 -3.15e-01 1.002 3.24e-02 0.0670
20 1.02e-02 2.29e-03 -3.31e-03 9.40e-02 1.224 3.10e-03 0.0501

So it appears that there is one obvious influential point (observations 3).
Lets look at the parameter estimates in the two cases

Intercept Tricep Thigh

All data -19.17 0.22 0.66

Obs 3 dropped -12.43 0.56 0.36

This particular observation is interesting in that this particular observation
seems to have a smaller thigh measurement than would be expected
given the the tricep measurement. In addition, this person has a midarm
circumference at least 5 larger than anybody in the dataset.

The other two observations flagged by R don’t seem to be particularly
influential, especially observation 5. Both appear to be flagged because of
the covratio).
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R functions for diagnostics

• resid(lm.object): raw residuals

• fitted(lm.object): fitted values

• rstandard(lm.object): studentized residuals

• rstudent(lm.object): externally studentized residuals, aka deleted t
residuals

• dffits(lm.object)

R calls this influential if

DFFITSi > 3

√
(p + 1)

n− p− 1

R functions for diagnostics 9



• dfbetas(lm.object)

R calls this influential if

DFBETASk(i) > 1

• cooks.distance(lm.object)

R calls this influential if

Di > The median of a Fp+1,n−p−1 distribution

This comes from origin of Cook’s D, which was based on confidence
ellipsoids for β. These confidence ellipsoids involve F distributions.

• hatvalues(lm.object)

R calls this influential if

hi >
3(p + 1)

n

R functions for diagnostics 10



• covratio(lm.object): This looks at the effect that the observation
has on the estimate of σ. What is reported is

COV Ri =

(
σ̂2

(i)

σ̂2

)p+1
1

1− hi

R calls this influential if

|1− COV Ri| > 3(p + 1)
n− p− 1

• influence.measures(lm.object): gives previous 5 measures in the
tabular format seen earlier.

R functions for diagnostics 11



Weighted Least Squares

One of the usual regression assumptions is that Var(Yi|Xi) is the same for
all observations. However there may be situations where this isn’t the case.
Instead, the case maybe

Var(Yi|Xi) =
σ2

wi

where the wi are known constants (known as weights).

Possible situations where this might hold are

• Responses are averages with known sample sizes:

Var(Yi|Xi) =
σ2

ni

Weighted Least Squares 12



• Responses are estimates and SEs are available:

Sometimes the response variables are values are measurements whose
estimated standard deviations se(Yi) are known. In this case,

wi =
1

se(Yi)2

• Variance is proportional to X (or a function of it):

Sometimes while the regression of a response variable is a straight line,
the variance increases with increases in the predictor variable. While a
transformation on the response might solve the variance problem, it will
introduce a nonlinear relationship. In this case

wi =
1
Xi

or wi =
1

X2
i

might be reasonable.

Weighted Least Squares 13



Example: Computer-assisted learning

A study of computer-assisted learning in 12 students investigated the
relationship between

• Cost: cost of computer time (in cents)

• Responses: the total number of responses in completing a lesson
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So it appears that a linear relationship is reasonable, but the constant
variance assumption isn’t.

Instead it appears the standard deviation of the residuals might increase
linearly with Response, or equivalently,

σ2 ∝ Response2

This suggests an analysis with

wi =
1

Response2
i

Weighted Least Squares 15



In this situation the least square estimate,

β̂ = (XTX)−1XTY

is still an unbiased estimate of β (see if you can show this), it is not
minimum variance.

Intuitively this makes sense as if I know that Var(Yi|Xi) is small for certain
observations, the regression surface should more likely be closer to these
observations than ones with large Var(Yi|Xi).

So the idea behind weighted least squares is to weight observations with
higher weights more. The weighted least squares criteria is

SSw(β) =
n∑

i=1

wi(Yi − β0 − β1Xi1 − . . .− βpXip)2

This penalizes big residuals for observations with big weights more that
those with small residuals.

Weighted Least Squares 16



This can be written is a matrix formulation by defining the weight matrix

W =




w1 0 . . . 0
0 w2 . . . 0
... ... . . . ...

0 0 . . . wn




(a diagonal matrix with the weights along the diagonal). Then

SSw(β) = (Y −Xβ)TW(Y −Xβ)

The minimizer of this is given by the weighted least squares estimate

β̂w = (XWX)−1XTWY

This is also a unbiased estimate of β, but is has better variance properties
than the least squares estimate.

Weighted Least Squares 17



The variance proportionality constant can be estimated by

σ̂2
w =

1
n− p− 1

n∑

i=1

wi(Yi − Ŷi)2

=
1

n− p− 1

n∑

i=1

wie
2
i

=
(Y − Ŷ)TW(Y − Ŷ)

n− p− 1

and the variance of β̂w is given by

Var(β̂w) = σ2
w(XWX)−1

which is usually estimated by

V̂ar(β̂w) = σ̂2
w(XWX)−1

Weighted Least Squares 18



For the example, the weighted least squares analysis gives

> learning.w.lm <- lm(Cost ~ Responses, data= learning,
weight=1/(Responses^2))

> summary(learning.w.lm)

Call:
lm(formula = Cost ~ Responses, data = learning,

weights = 1/(Responses^2))

Residuals:
Min 1Q Median 3Q Max

-0.36027 -0.25080 -0.01040 0.30517 0.34470

Weighted Least Squares 19



Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 17.4530 4.8970 3.564 0.00515 **
Responses 3.4100 0.3649 9.346 2.94e-06 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.2975 on 10 degrees of freedom
Multiple R-Squared: 0.8973, Adjusted R-squared: 0.887
F-statistic: 87.34 on 1 and 10 DF, p-value: 2.945e-06

> vcov(learning.w.lm)
(Intercept) Responses

(Intercept) 23.98 -1.737
Responses -1.74 0.133

In this output, σ̂2
w is given by Residual standard error: 0.2975

The vcov line gives V̂ar(β̂w) the usual estimate of Var(β̂w).

Weighted Least Squares 20



For comparison, here is the regular least squares analysis.

> summary(learning.lm)

Call:
lm(formula = Cost ~ Responses, data = learning)

Residuals:
Min 1Q Median 3Q Max

-6.3887 -3.5357 -0.3340 3.3193 6.4181

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 19.4727 5.5162 3.530 0.00545 **
Responses 3.2689 0.3651 8.955 4.33e-06 ***

Residual standard error: 4.598 on 10 degrees of freedom
Multiple R-Squared: 0.8891, Adjusted R-squared: 0.878
F-statistic: 80.19 on 1 and 10 DF, p-value: 4.33e-06

Weighted Least Squares 21



> vcov(learning.lm)
(Intercept) Responses

(Intercept) 30.43 -1.955
Responses -1.95 0.133
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Note that the residual summaries from both analyzes are quite different

From WLS analysis

Residuals:
Min 1Q Median 3Q Max

-0.36027 -0.25080 -0.01040 0.30517 0.34470

From LS analysis

Residuals:
Min 1Q Median 3Q Max

-6.3887 -3.5357 -0.3340 3.3193 6.4181

This is due to the different assumptions about the variances. If

Var(εi) =
σ2

wi

then
Var(

√
wiεi) = σ2

Weighted Least Squares 23



In the residual summary of the weighted least squares analysis, this is based
on ei

√
wi instead of the raw residuals ei. In addition, to see if a reasonable

weighting has been done, plot ei
√

wi instead of ei
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Weighted Regression Residuals

In this case, using weights of 1
Response2i

seams reasonable.
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