Regression Review - Part II Weighted Least Squares

Statistics 149

Spring 2006

Copyright ©2006 by Mark E. Irwin

Diagnostic Example

Body Fat Prediction

20 healthy females 25-34 years old were studied to come up with a predictive model for body fat based on simple measurements as the gold standard measurement is time consuming and expensive.

Response variable: Bodyfat - determined by body immersion in water

Predictor variables:

- Tricep Triceps Skinfold Thickness
- Thigh Thigh Circumference
- Midarm Midarm Circumference

In the following figure, the plotting symbol is the observation number.


```
> cor(bodyfat)
```

	Tricep	Thigh	Midarm	Bodyfat
Tricep	1.0000	0.92384	0.45778	0.8433
Thigh	0.9238	1.00000	0.08467	0.8781
Midarm	0.4578	0.08467	1.00000	0.1424
Bodyfat	0.8433	0.87809	0.14244	1.0000

Lets fit the model with Tricep and Thigh used to predict Bodyfat.

```
> bodyfat2.lm <- lm(Bodyfat ~ Tricep + Thigh, data=bodyfat)
>
> summary(bodyfat2.lm)
Call:
lm(formula = Bodyfat ~ Tricep + Thigh, data = bodyfat)
Residuals:
    Min    1Q Median    3Q    Max
-3.9469 -1.8807   0.1678   1.3367   4.0147
```

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)					
(Intercept)	-19.1742	8.3606	-2.293	0.0348	*				
Tricep	0.2224	0.3034	0.733	0.4737					
Thigh	0.6594	0.2912	2.265	0.0369	*				
Signif. code	es: 0 '**	*' 0.001 '*	**' 0.01	'*' 0.05	· · ·	0.1	,	,	1

Residual standard error: 2.543 on 17 degrees of freedom Multiple R-Squared: 0.7781, Adjusted R-squared: 0.7519 F-statistic: 29.8 on 2 and 17 DF, p-value: 2.774e-06

>Influence measures of

lm(formula = Bodyfat ~ Tricep + Thigh, data = bodyfat) :

dfb.1_ dfb.Trcp dfb.Thgh dffit cov.r cook.d hat inf -3.05e-01 -1.31e-01 2.32e-01 -3.66e-01 1.361 4.60e-02 0.2010 1 2 1.73e-01 1.15e-01 -1.43e-01 3.84e-01 0.844 4.55e-02 0.0589 -8.47e-01 -1.18e+00 1.07e+00 -1.27e+00 1.189 4.90e-01 0.3719 3 * -1.02e-01 -2.94e-01 1.96e-01 -4.76e-01 0.977 7.22e-02 0.1109 4 5 -6.37e-05 -3.05e-05 5.02e-05 -7.29e-05 1.595 1.88e-09 0.2480 * 6 3.97e-02 4.01e-02 -4.43e-02 -5.67e-02 1.371 1.14e-03 0.1286 7 -7.75e-02 -1.56e-02 5.43e-02 1.28e-01 1.397 5.76e-03 0.1555 2.61e-01 3.91e-01 -3.32e-01 5.75e-01 0.780 9.79e-02 0.0963 8 -1.51e-01 -2.95e-01 2.47e-01 4.02e-01 1.081 5.31e-02 0.1146 9 10 2.38e-01 2.45e-01 -2.69e-01 -3.64e-01 1.110 4.40e-02 0.1102 11 -9.02e-03 1.71e-02 -2.48e-03 5.05e-02 1.359 9.04e-04 0.1203 12 -1.30e-01 2.25e-02 7.00e-02 3.23e-01 1.152 3.52e-02 0.1093 1.19e-01 5.92e-01 -3.89e-01 -8.51e-01 0.827 2.12e-01 0.1784 13 14 4.52e-01 1.13e-01 -2.98e-01 6.36e-01 0.937 1.25e-01 0.1480 15 -3.00e-03 -1.25e-01 6.88e-02 1.89e-01 1.775 1.26e-02 0.3332 * 9.31e-03 4.31e-02 -2.51e-02 8.38e-02 1.309 2.47e-03 0.0953 16 7.95e-02 5.50e-02 -7.61e-02 -1.18e-01 1.312 4.93e-03 0.1056 17

 18
 1.32e-01
 7.53e-02
 -1.16e-01
 -1.66e-01
 1.462
 9.64e-03
 0.1968

 19
 -1.30e-01
 -4.07e-03
 6.44e-02
 -3.15e-01
 1.002
 3.24e-02
 0.0670

 20
 1.02e-02
 2.29e-03
 -3.31e-03
 9.40e-02
 1.224
 3.10e-03
 0.0501

So it appears that there is one obvious influential point (observations 3). Lets look at the parameter estimates in the two cases

	Intercept	Tricep	Thigh
All data	-19.17	0.22	0.66
Obs 3 dropped	-12.43	0.56	0.36

This particular observation is interesting in that this particular observation seems to have a smaller thigh measurement than would be expected given the the tricep measurement. In addition, this person has a midarm circumference at least 5 larger than anybody in the dataset.

The other two observations flagged by \mathbf{R} don't seem to be particularly influential, especially observation 5. Both appear to be flagged because of the covratio).

R functions for diagnostics

- resid(lm.object): raw residuals
- fitted(lm.object): fitted values
- rstandard(lm.object): studentized residuals
- rstudent(lm.object): externally studentized residuals, aka deleted t residuals
- dffits(lm.object)

 ${\bf R}$ calls this influential if

$$DFFITS_i > 3\sqrt{\frac{(p+1)}{n-p-1}}$$

• dfbetas(lm.object)

 ${\bf R}$ calls this influential if

 $DFBETAS_{k(i)} > 1$

• cooks.distance(lm.object)

 ${\bf R}$ calls this influential if

 $D_i >$ The median of a $F_{p+1,n-p-1}$ distribution

This comes from origin of Cook's D, which was based on confidence ellipsoids for β . These confidence ellipsoids involve F distributions.

• hatvalues(lm.object)

 ${\bf R}$ calls this influential if

$$h_i > \frac{3(p+1)}{n}$$

• covratio(lm.object): This looks at the effect that the observation has on the estimate of σ . What is reported is

$$COVR_i = \left(\frac{\hat{\sigma}_{(i)}^2}{\hat{\sigma}^2}\right)^{p+1} \frac{1}{1-h_i}$$

 ${\bf R}$ calls this influential if

$$|1 - COVR_i| > \frac{3(p+1)}{n-p-1}$$

• influence.measures(lm.object): gives previous 5 measures in the tabular format seen earlier.

Weighted Least Squares

One of the usual regression assumptions is that $Var(Y_i|\mathbf{X}_i)$ is the same for all observations. However there may be situations where this isn't the case. Instead, the case maybe

$$\operatorname{Var}(Y_i | \mathbf{X}_i) = \frac{\sigma^2}{w_i}$$

where the w_i are known constants (known as weights).

Possible situations where this might hold are

• Responses are averages with known sample sizes:

$$\operatorname{Var}(Y_i | \mathbf{X}_i) = \frac{\sigma^2}{n_i}$$

• Responses are estimates and SEs are available:

Sometimes the response variables are values are measurements whose estimated standard deviations $se(Y_i)$ are known. In this case,

$$w_i = \frac{1}{se(Y_i)^2}$$

• Variance is proportional to X (or a function of it):

Sometimes while the regression of a response variable is a straight line, the variance increases with increases in the predictor variable. While a transformation on the response might solve the variance problem, it will introduce a nonlinear relationship. In this case

$$w_i = rac{1}{X_i} \quad ext{or} \quad w_i = rac{1}{X_i^2}$$

might be reasonable.

Example: Computer-assisted learning

A study of computer-assisted learning in 12 students investigated the relationship between

- Cost: cost of computer time (in cents)
- Responses: the total number of responses in completing a lesson

So it appears that a linear relationship is reasonable, but the constant variance assumption isn't.

Instead it appears the standard deviation of the residuals might increase linearly with Response, or equivalently,

 $\sigma^2 \propto {\tt Response}^2$

This suggests an analysis with

$$w_i = \frac{1}{\operatorname{Response}_i^2}$$

In this situation the least square estimate,

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

is still an unbiased estimate of β (see if you can show this), it is not minimum variance.

Intuitively this makes sense as if I know that $Var(Y_i|\mathbf{X}_i)$ is small for certain observations, the regression surface should more likely be closer to these observations than ones with large $Var(Y_i|\mathbf{X}_i)$.

So the idea behind weighted least squares is to weight observations with higher weights more. The weighted least squares criteria is

$$SS_w(\boldsymbol{\beta}) = \sum_{i=1}^n w_i (Y_i - \beta_0 - \beta_1 X_{i1} - \ldots - \beta_p X_{ip})^2$$

This penalizes big residuals for observations with big weights more that those with small residuals.

This can be written is a matrix formulation by defining the weight matrix

$$\mathbf{W} = \begin{bmatrix} w_1 & 0 & \dots & 0 \\ 0 & w_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & w_n \end{bmatrix}$$

(a diagonal matrix with the weights along the diagonal). Then

$$SS_w(\boldsymbol{\beta}) = (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T \mathbf{W} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$

The minimizer of this is given by the weighted least squares estimate

$$\hat{\boldsymbol{\beta}}_w = (\mathbf{X}\mathbf{W}\mathbf{X})^{-1}\mathbf{X}^T\mathbf{W}\mathbf{Y}$$

This is also a unbiased estimate of β , but is has better variance properties than the least squares estimate.

The variance proportionality constant can be estimated by

$$\hat{\sigma}_w^2 = \frac{1}{n-p-1} \sum_{i=1}^n w_i (Y_i - \hat{Y}_i)^2$$
$$= \frac{1}{n-p-1} \sum_{i=1}^n w_i e_i^2$$
$$= \frac{(\mathbf{Y} - \hat{\mathbf{Y}})^T \mathbf{W} (\mathbf{Y} - \hat{\mathbf{Y}})}{n-p-1}$$

and the variance of $\hat{\pmb{\beta}}_w$ is given by

$$\operatorname{Var}(\hat{\boldsymbol{\beta}}_w) = \sigma_w^2 (\mathbf{XWX})^{-1}$$

which is usually estimated by

$$\widehat{\operatorname{Var}}(\hat{\boldsymbol{\beta}}_w) = \hat{\sigma}_w^2 (\mathbf{XWX})^{-1}$$

For the example, the weighted least squares analysis gives

> learning.w.lm <- lm(Cost ~ Responses, data= learning, weight=1/(Responses^2))

> summary(learning.w.lm)

```
Call:
lm(formula = Cost ~ Responses, data = learning,
    weights = 1/(Responses^2))
```

Residuals:

Min1QMedian3QMax-0.36027-0.25080-0.010400.305170.34470

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 17.4530 4.8970 3.564 0.00515 ** Responses 3.4100 0.3649 9.346 2.94e-06 *** ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2975 on 10 degrees of freedom Multiple R-Squared: 0.8973, Adjusted R-squared: 0.887 F-statistic: 87.34 on 1 and 10 DF, p-value: 2.945e-06

In this output, $\hat{\sigma}_w^2$ is given by Residual standard error: 0.2975 The vcov line gives $\widehat{\operatorname{Var}}(\hat{\beta}_w)$ the usual estimate of $\operatorname{Var}(\hat{\beta}_w)$. For comparison, here is the regular least squares analysis.

```
> summary(learning.lm)
Call:
lm(formula = Cost ~ Responses, data = learning)
Residuals:
   Min
            10 Median 30
                                 Max
-6.3887 -3.5357 -0.3340 3.3193 6.4181
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 19.4727 5.5162 3.530 0.00545 **
Responses 3.2689
                      0.3651 8.955 4.33e-06 ***
Residual standard error: 4.598 on 10 degrees of freedom
Multiple R-Squared: 0.8891, Adjusted R-squared: 0.878
F-statistic: 80.19 on 1 and 10 DF, p-value: 4.33e-06
```


Note that the residual summaries from both analyzes are quite different

From WLS analysis

Residuals: Min 1Q Median 3Q Max -0.36027 -0.25080 -0.01040 0.30517 0.34470

From LS analysis

Residuals: Min 1Q Median 3Q Max -6.3887 -3.5357 -0.3340 3.3193 6.4181

This is due to the different assumptions about the variances. If

$$\operatorname{Var}(\epsilon_i) = \frac{\sigma^2}{w_i}$$

then

$$\operatorname{Var}(\sqrt{w_i}\epsilon_i) = \sigma^2$$

In the residual summary of the weighted least squares analysis, this is based on $e_i\sqrt{w_i}$ instead of the raw residuals e_i . In addition, to see if a reasonable weighting has been done, plot $e_i\sqrt{w_i}$ instead of e_i

ဖ 0.3 Residuals *√Weight \sim 0.1 Residuals $\mathbf{N}_{\mathbf{I}}$ -0.1 Ο မှ -0.3 တို Responses Responses

Weighted Regression Residuals

In this case, using weights of $\frac{1}{\text{Response}_i^2}$ seams reasonable.