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Relative Risk

Using π1 − π2 as a measure of how different two groups are isn’t always a
good measure. For example, a difference of 0.05 means something different
for the cases

π1 0.5 0.1 0.051

π2 0.45 0.05 0.01

Another measure that people find useful, particularly for small π1 and π2, is
the relative risk

RR =
π2

π1

This often matches better with the way people think about small proportions.
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Example: Incidence of Rhabdomyolysis and Lipid-Lowering Drugs

(JAMA, December 1, 2004 – Vol 292, No. 21, pages 2585-2590)

Drug n Rhabdomyolysis Cases p̂

Cerivastatin (Baycol) 12695 10 0.000788

Atorvastatin (Lipitor) 130865 8 0.000061

R̂R =
0.000788
0.000061

= 12.89

π̂1 − π̂2 = 0.000788− 0.000061 = 0.000727

While the absolute difference between the two probabilities is small, it’s not
really the correct scale to be describing the difference.

The ratio of almost 13 times is a better description of the increased risk of
problems with Cerivastatin.
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Note that Cerivastatin was voluntarily removed from the market by Bayer in
August 2001 for due to reports of fatal cases of Rhabdomyolysis (a severe
muscle reaction to the drug).

Confidence Interval for RR

The sampling distribution of the usual estimate of RR,

R̂R =
π̂2

π̂1

usually is not well approximated by a normal distribution. So

R̂R± z∗α/2SE(R̂R)

will not work well as a confidence for RR.
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However the sampling distribution of

log R̂R

is approximately normally distributed. So we can base a confidence interval
on this quantity instead.

The standard error of log R̂R, as an estimate of log RR, is

SE(log R̂R) =
√

1
n1π̂1

− 1
n1

+
1

n2π̂2
− 1

n2

=
√

1
S1
− 1

n1
+

1
S2
− 1

n2
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giving a 100(1-α)% CI for RR of

CI(log(RR)) = log(R̂R)± z∗α/2

√
1

n1π̂1
− 1

n1
+

1
n2π̂2

− 1
n2

= (L,U)

From this we can get the confidence interval for RR of

CI(RR) = (eL, eU)

So for the lipid drug example

π̂1 =
10

12695
= 0.000788 π̂2 =

8
130865

= 0.000061

R̂R =
0.000788
0.000061

= 12.89 log RR = log 12.89 = 2.556
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SE(R̂R) =

√
1
10
− 1

12695
+

1
8
− 1

130865
= 0.4742

A 95% CI for log RR is

2.556± 1.96× 0.4742 = (1.627, 3.486)

Finally, a 95% CI for RR is

(e1.627, e3.486) = (5.086, 32.643)

Note that that this interval is not symmetric around RR. This is reasonable
in this case as RR must have a skewed distribution. For statistics with
skewed distributions, usually confidence intervals based on them with not
be symmetric about the observed statistic.
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Confidence Intervals and Transformations

Question: Is the transformation trick done earlier to get the CI for RR
valid?

Answer: Yes.

Suppose we have a valid confidence interval procedure for a parameter θ
and we want to get a confidence interval procedure for f(θ), where f(·) is
a strictly monotonic function (i.e. increasing or decreasing). For simplicity
lets assume that f(·) is an increasing function.

Now suppose that the true parameter value for a particular problem is θ0

and lets consider all data sets that include this value in the interval (L,U),
i.e,

L ≤ θ0 ≤ U

Since f is an increasing function,

f(L) ≤ f(θ0) ≤ f(U)
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i.e. f(θ0) is in the interval (f(L), f(U)).

So if the procedure that generates intervals (L,U) for θ0 has confidence
level (1 − α), the intervals (f(L), f(U)) for f(θ0) must have the same
confidence level.

The proposed interval for RR satisfies this as exp is an increasing function.

So how well this interval works depends on the approximately normality of
R̂R, which isn’t that good.
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Switching Failures and Successes

In the examples discussed so far, we could have looked at the failure rates
(the ϕs) instead of the success rates (the πs). Lets do that for a new
example

Example: Infant mortality in New York City in 1974

Looked at one year death rates

Birthweight Dead Alive Total

≤ 2500 grams 530 4340 4870

> 2500 grams 333 32637 32970
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What is the relative risk of death?

≤ 2500 grams : π̂1 =
530
4870

= 0.1088

> 2500 grams : π̂2 =
333

32970
= 0.0101

R̂Rdeath =
0.1088
0.0101

= 10.78

So the risk of death for low birthweight babies is almost 11 times higher
than the risk for normal birthweight babies.
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What if we look at the chance of being alive

≤ 2500 grams : ϕ̂1 =
4340
4870

= 0.8912 = 1− π̂1

> 2500 grams : ϕ̂2 =
32337
32970

= 0.9899 = 1− π̂2

R̂Ralive =
0.8912
0.9899

= 0.9086

Note that the RR based on the ϕ’s in not a simple function of the RR based
on the π’s.

RRs =
π2

π1
RRf =

ϕ2

ϕ1
=

1− π2

1− π1

i.e. no g(·) where g(RRs) = RRf .

Switching Failures and Successes 11



In fact, it can be shown that if RRs = c, then

• c < 1: RRf ∈ (1,∞)

• c > 1: RRf ∈ (0, 1)

The difference in proportions works much nicer. Its easy to show that

ϕ1 − ϕ2 = (1− π1)− (1− π2) = −(π1 − π2)

In addition, all the inference procedures discussed last time transform the
same way

• SE(ϕ̂1 − ϕ̂2) = SE(π̂1 − π̂2)

• CI(ϕ1 − ϕ2) = −CI(π1 − π2)

• z(ϕ1 − ϕ2) = −z(π1 − π2)
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Because of this problem with the relative risk plus the poor distributional
results, the relative risk isn’t the most popular measure
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Odds and Odds Ratio

Another measure to describe probability that is commonly used is the odds
of an event

ω =
π

1− π

Odds have the following properties

1. ω ∈ (0,∞)

2. π = 1
2 ⇐⇒ ω = 1

3. If the odds of a success are ω, then the odds of a failure are 1
ω

4. If the odds of a success are ω, the probability of a success is

π =
ω

1 + ω
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Since there is a 1-1 relationship between odds and probabilities, instead
of making statements about probabilities, we can make statements about
odds.

Consider the situation where two populations of interest have success
probabilities π1 and π2. The odds ratio is defined as

φ =
ω2

ω1
=

π2
1−π2

π1
1−π1

=
π2

π1
× 1− π1

1− π2

The odds ratio acts like relative risk, e.g.

RR = 10 ⇔ π2 = 10π1

vs

φ = 10 ⇔ ω2 = 10ω1
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In addition, if π1 and π2 are small, then

φ ≈ RR

This is one reason why people look at the odds ratio. Its similar to RR and
the distributional properties of its estimator are nicer.

There is another motivation for looking at odds. Consider the binomial
density function

P [S = k] =
(

n

k

)
πk(1− π)n−k

=
(

n

k

)
(1− π)n

(
π

1− π

)k

=
(

n

k

)(
1

1 + ω

)n

ωk
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So the odds is a natural parameter of the binomial distribution. Actually
log ω is the canonical parameter of the binomial (which we will talk about
when we get to talking about the exponential family).

One important relationship between odds and probabilities is

π2 − π1 = 0 < 0 > 0

φ = ω2/ω1 = 1 < 1 > 1

(You’re asked to justify this in question 3 of the assignment.)
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So we can write the hypotheses as

H0 : π2 − π1 = 0 vs HA : π2 − π1 6= 0

or as
H0 : φ = 1 vs HA : φ 6= 1

Similarly we get for the one-sided hypotheses

H0 : π2 − π1 = 0 vs HA : π2 − π1 < 0 ⇐⇒ H0 : φ = 1 vs HA : φ < 1

H0 : π2 − π1 = 0 vs HA : π2 − π1 > 0 ⇐⇒ H0 : φ = 1 vs HA : φ > 1
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There are four other reasons why the odds ratio is a useful measure for
comparing population probabilities

1. In practice, the odds ratio tends to remain more nearly constant over
levels of confounding variables.

Note that this is an empirical result and will not hold in some examples.

2. The odds ratio is the only parameter that can be used to compare two
groups of binary responses from retrospective studies.

3. The comparison of odds extends nicely to regression analysis (e.g.
Logistic regression)
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4. It really doesn’t make a difference whether we count successes or failures

φf =
$2

$1

=
ϕ2

ϕ1
× 1− ϕ1

1− ϕ2

=
1− π2

1− π1
× π1

π2

=
ω1

ω2
=

1
φs

where $i = 1
ωi

is the odds of failure in group i.

Will we use this is a slightly different form sometimes

log φf = log $2 − log $1 = − log φs = −(log ω2 − log ω1)
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Inference on the Odds Ratio

The usual estimate of the odds is

ω̂ =
π̂

1− π̂
=

S

n− S
=

S

F

Success Failure

Group 2 S2 F2

Group 1 S1 F1

This gives an estimate of the odds ratio
of

φ̂ =
ω̂2

ω̂1

=
S2(n1 − S1)
S1(n2 − S2)

=
S2 × F1

S1 × F2
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Birthweight Dead Alive Total

≤ 2500 grams 530 4340 4870

> 2500 grams 333 32637 32970

So for the NY infant death
example

φ̂ =
530× 4340
333× 32637

= 11.967

So the odds of death in for low birth weight babies is almost 12 times the
odds for normal birth weight babies.

For comparison, recall that RRdeath = 10.78.

Drug Rhabdomyolysis n

Baycol 8 12695

Lipitor 10 130865

For the lipid drugs example

φ̂ = 12.895 R̂R = 12.885
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As with the sampling distribution of RR, φ̂ is not well approximated by a
normal, unless n1 and n2 are extremely large.

However the sampling distribution of log φ̂ is better behaved and has the
following properties

1.
E[log φ̂] ≈ log φ = µ

2.

Var(log φ̂) ≈ 1
n1π1(1− π1)

+
1

n2π2(1− π2)
= σ2

3. If n1 and n2 are large, log φ̂
approx.∼ N(µ, σ2)

As noted in the text, there aren’t good rules for what large n means, but
usually if things are ok for π̂s, they should be ok here.

These statements can be justified by Taylor series methods (e.g. the
variance statement can be derived by the delta rule).
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Confidence Interval for φ

Similarly to the RR case, we will start by getting a confidence interval for
log φ.

To do this, we need to get the standard error. We can do this by plugging
the estimated πs into the variance formula and taking the square root,
giving

SE(log φ̂) =

√
1

n1π̂1(1− π̂1)
+

1
n2π̂2(1− π̂2)

=

√
1

n1π̂1
+

1
n1(1− π̂1)

+
1

n2π̂2
+

1
n2(1− π̂2)

=
√

1
S1

+
1
F1

+
1
S2

+
1
F2
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Then the confidence interval for log φ is

CI(log φ) = log φ̂± z∗α/2SE(log φ̂) = (L,U)

Following the same approach as for RR, a confidence interval for φ is

CI(φ) = (eL, eU)

=
(
e
log φ̂−z∗α/2SE(log φ̂)

, e
log φ̂+z∗α/2SE(log φ̂)

)

= φ̂×
(
e
−z∗α/2SE(log φ̂)

, e
z∗α/2SE(log φ̂)

)

Again this is not a symmetric interval around φ̂.
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To exhibit construction of this interval, lets look at the lipid drug example

φ̂ = 12.895 log φ̂ = 2.557

SE(log φ̂) =

√
1
10

+
1

12685
+

1
8

+
1

130857
= 0.474

CI(log φ) = 2.557± 1.96× 0.474

= 2.557± 0.930

= (1.627, 3.487)

CI(φ) = (e1.627, e3.487) = (5.088, 32.678)

So their is strong evidence that φ > 1, consistent with Baycol leading to
more problems with Rhabdomyolysis.
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Testing based on φ

We can examine hypotheses like

H0 : φ = 1 vs HA : φ 6= 1

or equivalently
H0 : log φ = 0 vs HA : log φ 6= 0

with tests based on log φ̂. To do this we need to calculate the standard
error of this under the null hypothesis. The usual estimate is

SE0(log φ̂) =

√
1

n1π̂c(1− π̂c)
+

1
n2π̂c(1− π̂c)

where

π̂c =
S1 + S2

n1 + n2
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Then the test statistic is

z =
log φ̂

SE0(log φ̂)

which is approximately distributed N(0, 1) under H0.

For the lipid drug example

π̂c =
10 + 8

12695 + 130865
= 0.000125

which gives

SE0(log φ̂)

=

s
1

12695× 0.000125(1− 0.000125)
+

1

130865× 0.000125(1− 0.000125)

= 0.830
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z =
2.557
0.830

= 3.080 p-value = 0.002

Again supporting that Baycor has more averse events.
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Prospective vs Retrospective Studies

In the examples looked at so far we are looking at the relationship between
2 binary variables. In each case their is a response/predictor relation of
interest

Example Response Predictor

Strokes Stroke (Yes/No) Treatment (Aspirin/Placebo)

Lipid Rhabdomyolysis (Yes/No) Drug (Baycol/Lipitor)

Infant Mortality Death (Yes/No) Birth weight (> / < 2500g)

In each of these cases, the sampling is prospective (at least effectively).
Subjects are assigned/observed for the predictor variable and then the
response variable is observed.

In some cases, this sampling method is not feasible. One example in the
text looks at the relationship between smoking and cancer.
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Another example would be the relationship between genetics and breast
cancer. The mutations in the gene BRCA1 have been shown to increase
the risk of breast cancer in women. Lets think of a prospective study to
examine the risk for both forms (wild type/mutant) of the gene.

Sample n young women and classify them by wild type (n1) and mutant
(n2). Observe them over a period of time (say 30 years) and count the
number who are diagnosed with cancer. This allows us to estimate

π1 = P [Cancer|Wild Type]

π2 = P [Cancer|Mutant]

and the odds ratio

φπ =
π2

π1
× 1− π1

1− π2

Not particularly feasible for a quick answer.
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Another approach to studying this relationship is a retrospective case-control
study. The form of the study is

• Sample m1 subjects without breast cancer. Count number with mutant
allele.

• Sample m2 subjects with breast cancer (often matched for important
covariates - age, smoking status, etc). Count number with mutant allele.

With this design we can estimate

p1 = P [Mutant|Cancer]

p2 = P [Mutant|No Cancer]

and

φp =
p2

p1
× 1− p1

1− p2

the information on the other set of conditionals.
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With this design it is not usually possible to estimate π1 and π2

However we can estimate φπ. It can be shown that

φπ = φp

So while we can’t get π1 and π2 (and equivalently ω1 and ω2), at least we
can get estimates of the relationship

ω2 = φπω1

In fact, φπ is the only parameter from the prospective study than can be
estimated in a retrospective study.

Prospective vs Retrospective Studies 33


