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Randomization Test in 2 × 2 Tables

If you believe that normality assumptions underlying the z and Chi-Square
tests are invalid, one approach is to do a randomization/permutation test.

So lets assume that the null hypothesis is true, that is, the explanatory
variable is not associated with the response variable. For example, aspirin
has no effect on stroke.

If this is the case, then the deviation seen from the null hypothesis in
the data is due to the random mechanism for assigning subjects to the
explanatory variable.

So the idea is to consider what would happen under the different allocations,
assuming the the response variable didn’t change.
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Subject Actual

Code Group Response

A 1 1

B 1 1

C 1 1

D 2 0

E 2 1

F 2 0

Lets consider the example to right. In
this case there are

(
6
3

)
= 20

different ways to allocate the 6
subjects to the 2 groups. So
we need to examine how many
successes and failures fall into these
20 different possible assignments,
assuming that changing the group
assignment doesn’t affect the response variable.
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Subject Actual

Code Group Response

A 1 1

B 1 1

C 1 1

D 2 0

E 2 1

F 2 0

Success Failure

Group 1 3 0

Group 2 1 2

Total 4 2

Hypothetical Number

Grouping of 1’s

Group 1 Group 2 in 1 in 2 π̂1 − π̂2

ADF BCE 1 3 -0.5

BDF ACE 1 3 -0.5

CDF ABE 1 3 -0.5

DEF ABC 1 3 -0.5

ABD CEF 2 2 0.0

ABF CDE 2 2 0.0

ACD BEF 2 2 0.0

ACF BDE 2 2 0.0

BCF ADE 2 2 0.0

ADE BCF 2 2 0.0

AEF BCD 2 2 0.0

BCD AEF 2 2 0.0

BDE ACF 2 2 0.0

BEF ACD 2 2 0.0

CDE ABF 2 2 0.0

CEF ABD 2 2 0.0

ABC DEF 3 1 0.5

ABE CDF 3 1 0.5

ACE BDF 3 1 0.5

BCE ADF 3 1 0.5
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In this example 8 of the 20 possibilities are as or more extreme as seen in
observed table, giving a 2-sided p-value of 0.4.

In theory this could be done for any 2 × 2 table. Lets consider the aspirin
example

Treatment No Stroke Stroke Total

Aspirin 63 15 78

Placebo 43 34 77

Total 106 49 155

The number of different possible allocations of subjects to treatment is(
155
78

)
= 2.91× 1045. So enumerating all the possible allocations will take a

while :).

However instead of doing an exact calculation, we can approximate it by
simulation. So instead of generating all

(
T
R1

)
possible allocations, we can

simulate B of these uniformly from the set of all possible ones.
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For each simulated configuration, calculate the test statistic of interest (say
X2 or π̂1 − π̂2) giving statistics z1, . . . , zB. Also calculate the statistic for
the observed data (call it zc). Then the p-value can be approximated by

p̂-value =
#zi more extreme than zc

B

The R function chisq.test has this ability built in with the option
simulate.p.value=T.

For the aspirin study the results look like
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> chisq.test(aspirin, correct=F)

Pearson’s Chi-squared test

data: aspirin X-squared = 11.1349, df = 1, p-value = 0.0008472

> chisq.test(aspirin, simulate.p.value = T) # default B = 2000)

Pearson’s Chi-squared test with simulated p-value
(based on 2000 replicates)

data: aspirin X-squared = 11.1349, df = NA, p-value = 0.001499

> chisq.test(aspirin, simulate.p.value = T, B = 10^6)

Pearson’s Chi-squared test with simulated p-value
(based on 1e+06 replicates)

data: aspirin X-squared = 11.1349, df = NA, p-value = 0.001016
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The true randomization p-value is 0.001010

The accuracy of the simulation approximation depends on the choice of B.
The standard error of p̂-value is

SE(p̂-value) =

√
p(1− p)

B

so choices of B can be based on bounding this for reasonable guesses for
p-value p.
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Fisher’s Exact Test

There is a different approach to calculating the randomization p-value that
requires much less computation.

In the toy example, while there were 20 different possible configurations
based on the explanatory variable, there were only 3 different tables
generated

Success Failure Total Success Failure Total

Group 1 3 0 3 Group 1 2 1 3

Group 2 1 2 3 Group 2 2 1 3

Total 4 2 6 Total 4 2 6

Success Failure Total

Group 1 1 2 3

Group 2 3 0 3

Total 4 2 6
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In the aspirin example, while there are O(1045) different treatment
allocations, there are only 50 tables that need to be considered.

In addition to only being very few tables that need to be considered, they
all have a special property, they all have the same marginal totals.

So calculating a p-value involves figuring out what is the probability of
seeing different possible tables under the null hypothesis.

Actually we don’t need to do it for all tables.

We only need to calculate the probabilities of tables as or more extreme
than the one observed.
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Consider the possible table

Variable 2

Variable 1 Success Failure Total

Success n11 n12 R1

Failure n21 n22 R2

Total C1 C2 T

Under the null hypothesis of

H0 : ω1 = ω2

n11 ∼ Hyper(R1, C1, T ).
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So we need to be able to calculate hypergeometric probabilities for some
tables.

P [n11 = k] =

(
C1
k

)(
C2

R1−k

)
(

T
R1

)

=
R1!R2!C1!C2!

T !k!(R1 − k)!(C1 − k)!(R2 − C1 + k)!

for k = 0, . . . , min(R1, C1).

assuming that R1 ≤ R2 and C1 ≤ C2 (otherwise you need to fiddle the
bounds on k).

Actually any cell in the table has the same effective hypergeometric
distribution so it doesn’t matter what cell you pick.
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What is considered as or more extreme?

For one sided tests its easy. Suppose the alternative you are interested in is

HA : π1 > π2

In this case, any table with n11 > n11(obs) is more consistent with the
alternative, so the p-valueis

p-value =
kmax∑

k=n11(obs)

P [n11 = k]

where kmax is the largest possible value of n11 for the given margins.
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Similarly for
HA : π1 < π2

p-value =
n11(obs)∑

k=kmin

P [n11 = k]

where kmin is the smallest possible value of n11 for the given margins.

For two sided alternatives it a bit more complicated. There are a couple of
possibilities

• Include tables where | log φ| ≥ | log φ̂|. This should be equivalent to
finding tables where X2 ≥ X2(obs).

• Include tables where P [n11 = k] ≤ P [n11 = n11(obs)].

This is what R does in its function fisher.test

Most of the time these should give the same answer. If not they should be
similar.
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This is what is known as Fisher’s Exact test.

Lets see how it works for a couple of datasets.

For the small dataset, with the randomization p-value of 0.4

> fisher.test(permute)

Fisher’s Exact Test for Count Data

data: permute
p-value = 0.4
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.2031288 Inf
sample estimates:
odds ratio

Inf

Fisher’s Exact Test 14



For the aspirin study

> chisq.test(aspirin, correct=F)

Pearson’s Chi-squared test

data: aspirin
X-squared = 11.1349, df = 1, p-value = 0.0008472

> chisq.test(aspirin)

Pearson’s Chi-squared test with Yates’
continuity correction

data: aspirin
X-squared = 10.0119, df = 1, p-value = 0.001555
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> chisq.test(aspirin, simulate.p.value = T, B = 10^6)

Pearson’s Chi-squared test with simulated p-value
(based on 1e+06 replicates)

data: aspirin
X-squared = 11.1349, df = NA, p-value = 0.000978

> fisher.test(aspirin)

Fisher’s Exact Test for Count Data

data: aspirin
p-value = 0.001010
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval: 1.531635 7.356786
sample estimates:
odds ratio
3.294432
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In this case, the simulated p-value is close to the Fisher Exact Test p-value
(as it should be). In addition, the Chi-Square test p-value is also similar.

This example also illustrates the problem with the Yates’ correction. It tends
to be too conservative, giving larger p-values than necessary. For smaller
sample sizes, it tends to match well with Fisher’s Exact test. However for
larger samples, the correction isn’t needed.

One additional comment about fisher.test. As you might have noticed
that it gives a confidence interval for φ, the odds ratio.

This is based on the fact that the distribution of n11 can be determined
under different alternatives described by the odds ratio. It has what is known
as non-central hypergeometric distribution with parameters R1, C1, T , and
φ (Hyper-nc(R1, C1, T, φ)). The idea behind this interval is to determine
for which values of φ0, the hypothesis test for

H0 :
ω2

ω1
= φ0 vs H0 :

ω2

ω1
6= φ0

is not rejected by Fisher’s Exact test.
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For the aspirin example

> fisher.test(aspirin)

Fisher’s Exact Test for Count Data

data: aspirin
p-value = 0.001010
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
1.531635 7.356786
sample estimates:
odds ratio
3.294432

> or.ci(63,78,43,77)
prop1 prop2 OR lower upper conf.level

1 0.8076923 0.5584416 3.32093 1.615356 6.827334 0.95
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Note that the estimate of φ is a bit different φ̂ as it is based on the MLE
for the non-central hypergeometric model.

Don’t worry about the difference as in most cases it will be small.
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Paired Binary Data

In the cases considered so far, it is assumed that each binary/multinomial
trial is independent. However there are situations where this isn’t true.

In some cases you will have paired data such as

• Observations on twins

• Patients are their own control (right eye vs left eye)

• Two raters examining the same objects

In these situations, the previous analyzes will not work as they do not
account for the correlation in the data.
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Example: Presidential Approval

Approval of the President’s performance in office in two surveys, one month
apart, for a random sample of 1600 voting-age Americans.

2nd Survey

1st Survey Approve Disapprove Total

Approve 794 150 944

Disapprove 86 570 656

Total 880 720 1600

Is there any evidence that the number of American supporting the president
is changing.

Variable 2

Variable 1 Success Failure Total

Success n11 n12 R1

Failure n21 n22 R2

Total C1 C2 T
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The underlying probability model can be describe by the following table.
Each observation must fall into one of the four cells.

Variable 2

Variable 1 Success Failure Total

Success p11 p12 p1+

Failure p21 p22 p2+

Total p+1 p+2 1

• p1+ = proportion success in 1st variable

p̂1+ =
R1

T
=

944
1600

= 0.59

• p+1 = proportion supporting in 1st variable

p̂+1 =
C1

T
=

880
1600

= 0.55
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So the difference in approval is given by

p1+ − p+1

In the example, the estimate is

p̂1+ − p̂+1 = 0.59− 0.55 = 0.04

So the presidential approval estimated to have gone down by 4%.

However most people in this survey really don’t tell much about how
preferences are changing as they don’t change there mind (1364

1600 = 0.85).

The information about what is happening is coming from the people in the
off diagonals ( 236

1600 = 0.15).
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We can see that this must be the case as

p1+ − p+1 = (p11 + p12)− (p11 + P21)

= p12 − p21

The difference in probabilities only depends on the probabilities in the off
diagonal cells.

So this can be estimated by

p̂1+ − p̂+1 = p̂12 − p̂21

=
n12 − n21

T
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McNemar’s Test

To examine the hypotheses

H0 : p12 − p21 = 0 H0 : p12 − p21 6= 0

or equivalently

H0 : p1+ − p+1 = 0 H0 : p1+ − p+1 6= 0

the following test statistic can be used

X2 =
(n12 − n21)2

n12 + n21

which should be compared to a χ2
1 distribution.
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This is based on the result, that under the null hypothesis

Var(p̂12 − p̂21) =
p12 + p21

T

Thus the standard error is estimated by

SE(p̂12 − p̂21) =
√

n12 + n21

T

For the example

X2 =
(150− 86)2

150 + 86
= 17.36

which has a corresponding p-value of 0.00003.

So there is strong evidence that the President’s support is going down as
p̂1+ > p̂+1
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This can be done in R as follows

> Performance <- matrix(c(794, 86, 150, 570), nr = 2,
dimnames = list("1st Survey" = c("Approve", "Disapprove"),

"2nd Survey" = c("Approve", "Disapprove")))
> Performance

2nd Survey
1st Survey Approve Disapprove
Approve 794 150
Disapprove 86 570

> mcnemar.test(Performance, correct=F)

McNemar’s Chi-squared test

data: Performance
McNemar’s chi-squared = 17.3559, df = 1, p-value = 3.099e-05
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Note that p-value of this test is based on an asymptotic approximation.
One rule of thumb I have seen is that the χ2

1 approximation should be ok if
n12 + n21 ≥ 10

There is a continuity corrected version of McNemar’s test if you are worried
about this. In the case the test statistic is modified to

X2
c =

(|n12 − n21| − 1)2

n12 + n21

This version is the default in R, which is gotten by correct=T.

If you wish to do a 1-sided test, you can compute the test statistic

z =
n12 − n21√
n12 + n21

(which is the square root of X2) and compare to a N(0, 1) distribution.
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