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Excess in 2 × 2 Tables

As mentioned last time, for tables with fixed margins, under the H0 : ω1 =
ω2,

n11 ∼ Hyper(R1, C1, T )

The mean and variance of this hypergeometric are

E[n11] =
R1C1

T
Var(n11) =

R1R2C1C2

T 2(T − 1)

So another measure of how much a particular dataset deviates from the null
hypothesis is

Excess = Observed− Expected
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It doesn’t matter which cell you calculate this for as

|Excessij| = |Oij − Eij|
and

Var(Excessij) = Var(nij)

=
R1R2C1C2

T 2(T − 1)

is the same for all four cells in a 2 × 2 table.

So an alternative test is to use the test statistic

z =
Excess√

Var(Excess)

When the sample sizes are large, the sampling distribution of z is
approximately N(0, 1).
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This gives alternatives to Fisher’s Exact and Pearson’s Chi-square tests.
However it is usually used for different purposes, the comparison of multiple
2 × 2 tables.
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Comparing N Odds Ratios

Example: Ille-et-Vilaine Study of Oesophageal Cancer

A retrospective study to examine the relationship with alcohol consumption
and oesophageal cancer.

Alcohol Cancer No Cancer Total

High 96 109 205

Low 104 666 770

Total 200 775 975

There is an additional complication in that subjects range from 25 years in
age to older than 75. Age is strongly associated with cancer with the older
somebody is, the more likely they are to have the disease.
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Cancer No Cancer

High Alcohol Low Alcohol High Alcohol Low Alcohol

Age n11 n12 n21 n22

25-34 1 0 9 106

35-44 4 5 26 164

45-54 25 21 29 138

55-64 42 34 27 139

65-74 19 36 18 88

75+ 5 8 0 31

Total 96 104 109 666

So instead of asking whether the odds of cancer is the same for both alcohol
consumption levels, it makes more sense to ask whether the odds of cancer
is the same for both alcohol consumption levels within each age group.
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So there may be different rates of alcohol consumption (the response
variable in this retrospective study) across the different age groups, but is
the pattern of alcohol consumption the same between the cancer and non
cancer groups within each age group.

Cancer No Cancer

High Alcohol Low Alcohol High Alcohol Low Alcohol

Age n11 n12 n21 n22 φ̂k

25-34 1 0 9 106 ∞
35-44 4 5 26 164 4.98

45-54 25 21 29 138 5.61

55-64 42 34 27 139 6.30

65-74 19 36 18 88 2.56

75+ 5 8 0 31 ∞
Total 96 104 109 666
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We are interested in

H0 : φ1 = φ2 = . . . = φN = 1

Are the odds rates in each strata = 1?

Since all of the estimated odds seem to be far from 1, it appears that the
data in this case don’t support the null hypothesis. But we want a better
test to examine this observation.

Lets think what happens in table k. We can use the Excess in this table
to examine whether φk = 1 or not.

In addition, under reasonable sampling schemes, the Excess measures in
each subtable is independent of those in the other tables.

One way to combine the information from each subtable to get an overall
summary on the null hypothesis is to add the Excess from each 2 × 2
table.
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Mantel-Haenszel Test

Y =
N∑

k=1

Excessk

Under the null hypothesis
E[Y ] = 0

and

Var(Y ) =
N∑

k=1

Var(Excessk)

=
N∑

k=1

R1kR2kC1kC2k

T 2
k (Tk − 1)

where Rik, Cjk, and Tk are the row, column, and grand totals from table k.
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The usual test statistic to examine this is

z =
Y√

Var(Y )

=
∑

Excessk√∑ R1kR2kC1kC2k

T 2
k
(Tk−1)

which is compared to a N(0, 1) distribution. This is known as the Mantel-
Haenszel Test (sometimes as Cochran-Mantel-Haenszel Test).

Note that this is an asymptotic result. A common rule of thumb is based
on summing the expected counts across the tables, i.e. look at

E11+ E12+

E21+ E22+

If each of the Eij+ ≥ 5, the normal approximation shouldn’t be too bad.
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Cancer No Cancer

High Low High Low

Age n11 n12 n21 n22 Expected Excess Variance

25-34 1 0 9 106 0.086 0.914 0.079

35-44 4 5 26 164 1.357 2.643 1.106

45-54 25 21 29 138 11.662 13.338 6.858

55-64 42 34 27 139 21.669 20.331 10.671

65-74 19 36 18 88 12.640 6.360 6.449

75+ 5 8 0 31 1.477 3.523 0.944

Total 48.891 47.109 26.106

z =
47.109√
26.106

= 9.22

p-value = 2P [Z ≥ 9.22] = 2.9× 10−20
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In this example, just over 47 more cancer patients were high alcohol
consumers than would be expected if the odds of cancer were the same
for high and low alcohol subjects. The p-value suggests that this result is
highly statistically significant (and practically as well).

So it appears that alcohol consumption is associated with oesophageal
cancer.

Often a Chi-squared version of the Mantel-Haenszel test will be used instead
of what has been discussed. The test statistic is

X2 =
Y 2

Var(Y )
=

(
∑

Excessk)2∑ R1kR2kC1kC2k

T 2
k
(Tk−1)

= z2

and is compared to a χ2
1 distribution.

This is the version that R presents in the function mantelhaen.test
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> cancer <- array(
+ c( 1, 9, 0, 106,
+ 4, 26, 5, 164,
+ 25, 29, 21, 138,
+ 42, 27, 34, 139,
+ 19, 18, 36, 88,
+ 5, 0, 8, 31), c(2,2,6),
+ dimnames = list(Cancer=c("Yes","No"), Alcohol=c("High","Low"),
+ Age=c("25-34","35-44","45-54","55-64","65-74","75+")))
>
> cancer
, , Age = 25-34

Alcohol
Cancer High Low

Yes 1 0
No 9 106
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, , Age = 35-44

Alcohol
Cancer High Low

Yes 4 5
No 26 164

> mantelhaen.test(cancer, correct=F)

Mantel-Haenszel chi-squared test without continuity correction

data: cancer
Mantel-Haenszel X-squared = 85.0095, df = 1, p-value < 2.2e-16
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:
3.562131 7.467743
sample estimates:
common odds ratio

5.157623
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Note the default of mantelhaen.test(array, alternative="two.sided")
is a two-sided test, which compares the hypotheses

H0 : φ1 = . . . = φN = 1 vs HA : φ1 = . . . = φN 6= 1

It is also possible to do one sided tests which deal with hypotheses

• mantelhaen.test(array, alternative="less")

H0 : φ1 = . . . = φN = 1 vs HA : φ1 = . . . = φN < 1

• mantelhaen.test(array, alternative="greater")

H0 : φ1 = . . . = φN = 1 vs HA : φ1 = . . . = φN > 1
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This function will also estimate the common odds ratio, assuming that each
table is generated by a common odds ratio. The estimate of this common
odds ratio is

φ̂ =
∑

all tables n11n22/T∑
all tables n12n21/T

So the estimate of this in the cancer example is

φ̂ =
(1)(106)

116 + (4)(164)
199 + (25)(138)

213 + (42)(139)
242 + (19)(88)

161 + (5)(31)
44

(0)(9)
116 + (5)(26)

199 + (21)(29)
213 + (34)(27)

242 + (36)(18)
161 + (8)(0)

44

= 5.16

So this implies that the odds of cancer is 5 times more for people with high
alcohol consumption than those with low consumption.
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An underlying assumption of this test and the estimate of the common
odds ratio is that the odds ratio is the same for each table. If this is
not true, this test may not act as expected, and it isn’t clear what φ̂ is
actually estimating. Lets look at an example where the constant odds ratio
assumption seems to breakdown.

Example: Graduate Admissions at UC Berkeley

The following is the graduate admissions data at UC Berkeley for
their 6 largest graduate programs in 1973 (available in R in the array
UCBAdmissions). One of the initial concerns was whether there was any
gender discrimination in this data as

Gender Admitted Rejected % Admitted

Male 1198 1493 44.5

Female 557 1278 30.6
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One thing that needs to be noted that there are different admission rates
for the different programs

Major Admitted Rejected Applied % Admit % Reject

A 600 333 933 64.31 35.69

B 370 215 585 63.25 36.75

C 322 596 918 35.08 64.92

D 269 523 792 33.96 66.04

E 148 436 584 25.34 74.66

F 46 668 714 6.44 93.56

Total 1755 2771 4526 38.78 61.22

So we should take a look at happens within each major separately.
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Men Women

Admit Reject Admit Reject

Major n11 n12 n21 n22 φ̂k Men % Women %

A 512 313 89 19 0.35 62 82

B 353 207 17 8 0.80 63 68

C 120 205 202 291 1.13 37 34

D 138 279 121 244 0.92 33 35

E 53 138 94 299 1.22 28 24

F 22 351 24 317 0.83 6 7

Looking at things this way, it appears that there isn’t really evidence of
discrimination against women. Women seem to do about the same as or
better (major A) than men. When looking at the aggregate 2 × 2 table, the
fact that women tend to apply to the more difficult programs for admittance
affects the observed relationship.
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This data set is an example Simpson’s Paradox

An association or comparison that holds for all of several groups can
reverse direction when the data are combined to form a single group.

If we look at just the 2 × 2 table, φ̂ = 1.80. But this is driven by about
half the men applying to majors A and B, but only about 5% of the women.

Note that the odds ratio in the aggregated table is much larger than any
odds ratio in the subtables.

In this example, major is an example of a lurking variable, a variable that
has (potentially) an important effect, but it ignored in an analysis.

Lets look at the Mantel-Haenszel test on this dataset
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> mantelhaen.test(UCBAdmissions, correct=F)

Mantel-Haenszel chi-squared test without continuity correction

data: UCBAdmissions
Mantel-Haenszel X-squared = 1.5246, df = 1, p-value = 0.2169
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:
0.7719074 1.0603298
sample estimates:
common odds ratio

0.9046968

So this test suggests there is nothing going on with the relationship between
admissions and gender, missing what is going on in Major A.

It is possible to show that in this example the odds ratio isn’t constant by
Woolf’s test for interaction (p-value = 0.003).
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While there is an interaction in admissions data, in many cases a constant
odds ratio assumption is reasonable. Another way of thinking of this is
while the odds and probabilities for success can very greatly across different
tables, the odds ratio for each table are approximately the same. For
example, the cancer example shows this

Cancer No Cancer

High Alcohol Low Alcohol High Alcohol Low Alcohol

Age n11 n12 n21 n22 φ̂k

25-34 1 0 9 106 ∞
35-44 4 5 26 164 4.98

45-54 25 21 29 138 5.61

55-64 42 34 27 139 6.30

65-74 19 36 18 88 2.56

75+ 5 8 0 31 ∞
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There isn’t much evidence of different odds ratios (p-value = 0.23). Note
that the tables that appear to deviate have fairly small sample sizes, so the
estimates of φk in those tables is highly variable.

One other issue with the Mantel-Haenszel Test is it treats the confounding
variable as nominal. While this is reasonable for the admissions example, it
potentially misses the ordering of age in the cancer example.

This is more important with modeling the odds ratio. For example we could
think of fitting something like

φ(age) = α + βage

or

log(φ(age)) = α + βage
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Logistic Regression Motivation

In the previous examples, we have been looking modeling success
probabilities or odds based on categorical variables. For example

• P [Stroke|Treatment]

• P [Lives one year|Birth Weight]

• P [Admission|Gender, Major]

In all of these examples, the predictor variables are discrete, or at least
treated that way.

There are examples where the predictor variables are continuous (or having
enough levels where treating them as continuous is reasonable)
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Example: Bottle Return

A carefully controlled experiment was conducted to study the effect of
the size of the deposit level on the likelihood that a returnable one-litre
soft-drink bottle will be returned. The following data show the number of
bottles returned (yi) out of 500 sold (ni) at each of 6 deposit levels (xi, in
cents)

Observation i: 1 2 3 4 5 6

Deposit level xi: 2 5 10 20 25 30

Number sold ni: 500 500 500 500 500 500

Number returned yi: 72 103 170 296 406 449

Prop. returned: 0.144 0.206 0.340 0.592 0.812 0.898
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So it is fairly clear that increasing the deposit that a person needs to pay,
the more likely a bottle is returned.

So we want to derive a model for the probability that a bottle that a bottle
is returned, π, given the deposit x.

Logistic Regression Motivation 25



Let Zi be the response for the ith bottle where

Zi =

{
1 Returned

0 Not returned

Then
Zi ∼ Bin(1, π(xi))

where xi is the deposit for bottle i.

An equivalent way of thinking of this, is to model

µ(Zi|xi) = π(xi)

This is the analogue to linear regression, where we are trying to describe

µ(Yi|xi) = f(xi) (= β0 + β1xi often)

Logistic Regression Motivation 26



One possible model would be

π(xi) = β0 + β1xi

Lets fit the observed data (xi, p̂(xi)) by least squares. Lets ignore that this
is suboptimal since the variances p̂(xi) can be constant.

> return.lm <- lm(ret.prop[,1] ~ deposit)

> summary(return.lm)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.071542 0.022413 3.192 0.0332 *
deposit 0.027856 0.001211 22.996 2.12e-05 ***
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Now lets see what the model predicts the return probabilities to be under
this model

> pred.levels <- data.frame(deposit=seq(30,50,5))
> predict(return.lm, pred.levels)

1 2 3 4 5
0.9072207 1.0465005 1.1857803 1.3250601 1.4643399

So for deposits over 35 cents (actually 33.33 cents) will have estimated
predict return probabilities of greater than 1.

While it doesn’t make much sense here, what would we predict if x = −5
(You have to pay to recycle the bottle). In this case, the estimated
probability is -0.0677.

So this model has problems in that it can give probabilities outside [0,1].
So we need a different model for modeling binary responses.
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The approach we will take next class is to model π as

g(π) = β0 + β1x

for a nice function g. We want to choose g such that g(π) can range from
(−∞,∞), the possible range of β0 + β1x.
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