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Personnel

Instructor: Mark Irwin

Office: 611 Science Center

Phone: 617-495-5617

E-mail: irwin@stat.harvard.edu

Lectures: Tues, Thurs 10:00 - 11:30, Science Center 221

Office Hours: Monday & Wednesday, 11:00 - 12:00

or by appointment

Teaching Fellow: Alan Lenarcic

E-mail: lenarcic@fas.harvard.edu

Office Hours: To be announced
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Text Book

Required Text: Gelman A, Carlin JB, Stern HS, & Rubin DB (2004)

Bayesian Data Analysis, 2nd edition.

Chapman & Hall/CRC.

Available from the COOP and on reserve in Cabot Library

Suggested Gilks WR, Richardson S, and Spiegelhalter DJ (1996).

References: Markov Chain Monte Carlo in Practice.

Chapman & Hall / CRC.

Liu J (2001). Monte Carlo Strategies in Scientific

Computing. Springer-Verlag.
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Computing

Many of the computational problems can be done in BUGS (Bayesian
inference Using Gibbs Sampling). Windows and Linux (Intel based) versions
are available. Familiarity with BUGS is not assumed. R/S-Plus will also be
useful.

Links to software and other computing resources are available from the
course web site or at

http://www.people.fas.harvard.edu/∼mirwin/computing/
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Grading

Course grades will be determined based on homework assignments (4 or
5 during the term) and a term project, the exact form of which is to be
determined.
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Web Site

http://www.courses.fas.harvard.edu/∼stat220/

Available on the site:

• PDF files of the lecture notes

• Data files used in class, in text format

• References, with many of the papers available in pdf format.

• Assignments, solutions, data files for them

• Class announcements, calendar, etc
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Course Goals

1. Basics of the Bayesian inference:

(a) setting up a probability model and the basics of statistical inferences;
(b) using the probability theory and the Bayes rule;
(c) simple examples: binomial, normal, and exponential families;
(d) non-informative priors;
(e) exchangeability and modelling;
(f) asymptotic normality (informal introduction).

2. Multi-parameter models, normal with unknown mean and variance, the
multivariate normal distribution, multinomial models, Dirichlet process
models, and examples. Computation and simulation from arbitrary
posterior distributions in two parameters.
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3. Inference from large samples and comparison to standard non-Bayesian
methods.

4. Hierarchical models, estimating several means, estimating population
parameters from data, meta analysis, and some examples. Emphasis on
statistical thinking for complicated problems.

5. Model checking, comparison to data and prior knowledge, sensitivity
analysis, prior and posterior predictive checking, posterior odds ratio,
model likelihood.

6. Computation 1 (non-iterative methods): integration, conjugate analysis,
normal and Laplace approximations, importance sampling, rejection
sampling, sequential imputation.

7. Computation 2 (iterative sampling methods): Metropolis-Hastings
algorithms and the Gibbs sampler. Their variations include Metropolized
independent sampling, iterative predictive updating, and simulated
tempering; etc.
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8. Missing data problems and data augmentation methodology. Latent
variable models; Student-t models for robust inference and sensitivity
analysis; Bayesian nonparametrics.
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Who is this man?

This is reportedly the only known picture of
the Reverend Thomas Bayes, F.R.S. — 1701?
- 1761.

This picture was taken from the 1936 History
of Life Insurance (by Terence O’Donnell,
American Conservation Co., Chicago). As
no source is given, the authenticity of this
portrait is open to question.

So what is the probability that this is actually
Reverend Thomas Bayes?

However there is some additional information.
How does this change our belief about who
this is?
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Many details about Bayes are sketchy. According to Steve Stigler

The date of his birth is not known: Bayes’s posterior is better known
than his prior.
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Actually his date of death isn’t that well known either. Its general considered
to be April 7, 1761 however it has also be reported as April 17th of the
same year.

There is some additional information we can get from this picture to help
use decide whether this is Bayes or not.

1. The caption under the photo in O’Donnell’s book was “Rev. T. Bayes:
Improver of the Columnar Method developed by Barrett”.

There are some problems with this claim. First Barrett was born in 1752
and would have been about 9 years old when Bayes died. In addition, the
method that Bayes allegedly improved was apparently developed between
1788 and 1811 and read to the Royal Society in 1812, long after Bayes’
death.

So there is a problem here, but whether it is a problem with just the
caption or the picture as well isn’t clear.
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2. Bayes was a Nonconformist (Presbyterian) Minister. Does the clothing
in the picture match that of a Nonconformist Minister in the 1740’s and
1750’s. The picture has been compared to three other Ministers, Joshua
Bayes, Bayes’ father, Richard Price (portrait dated 1776), the person
who read Bayes’ paper to the Royal Society, and Philip Doddridge, a
friend of Bayes’ brother-in-law.

Joshua Bayes Richard Price Philip Doddridge

(1671-1746) (1723-1791) (1702-1751)
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Two things stand out in the comparisons.

(a) No wig. It is likely that Bayes should have been wearing a wig similar
to Doddridge’s, which was going out of fashion in the 1740’s or similar
to Price’s, which was coming into style at the time.

(b) Bayes appears to be wearing a clerical gown like his father or a larger
frock coat with a high collar. On viewing the other two pictures, we
can see that the gown is not in the style for Bayes’ generation and the
frock coat with a large collar is definitely anachronistic.

(Interpretation of David Bellhouse from IMS
Bulletin 17, No. 1, page 49)
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Question: How to we incorporate this information to adjust our probability
that this is actually a picture of Bayes?

Answer: P [This is Bayes|Data] which can be determined by Bayes’
Theorem.

P [B|Data] =
P [B]P [Data|B]

P [B]P [Data|B] + P [Bc]P [Data|Bc]

Note that this is not easy to do as assigning probabilities here is difficult.

For an example of how this can be done, see the paper (available on the
course web site)

Stigler SM (1983). Who Discovered Bayes’s Theorem. American
Statistician 37: 290-296.
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In this paper, Stigler examines whether Bayes was the first person to discover
what is now known as Bayes’ Theorem. There is evidence that the result
was known in 1749, 12 years before Bayes’ death and 15 years before Bayes’
paper was published. In Stigler’s analysis

P [Bayes 1st discovered | Data] = 0.25

P [Saunderson 1st discovered | Data] = 0.75

Note that Bayes actually proved a special case of Bayes’ Theorem involving
inference on a Bernoulli success probability.

An example where Bayes’ approach could be used is . . .
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How accurate are Punxsutawney Phil and Wiarton
Willie?

Punxsutawney Phil Wiarton Willie

Shadow in 2005 No Shadow in 2005

So what are the probabilities that Punxsutawney Phil and Wiarton Willie
make accurate predictions?
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According to the Wiarton Willie website, Willie has been correct 37 times
out of 41 years (p̂ = 37

41 = 0.902).
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By Bayes’ approach

E[p|Data] =
38
43

= 0.884

SD(p|Data) = 0.048

Mode(p|Data) =
37
41

= 0.902

(I suspect their reported results are a
bit biased. :) The only numbers I
could find for Punxsutawney Phil say
he has never been wrong.)
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Statistical Inference

Two main approaches

• Frequentist (Stat 111/211)

Model parameters are fixed unknown quantities. Randomness only in
data.

– Estimation - Maximum likelihood, method of moments
– Confidence intervals
– Significance testing - p-values
– Hypothesis testing - Reject/Don’t Reject H0
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• Bayesian (Stat 220)

Model parameters are random variables. Inference is based on P [θ|Data],
the posterior distribution given the data.

– Estimation - Posterior means, modes
– Credible intervals/sets
– Posterior probabilities

There is also decision theory which tends to be Bayesian in nature (good
procedures (e.g Admissible procedures) must be Bayesian with respect to
some prior).
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Why Should You Use Bayesian Procedures?

• It is the only the correct form of inference. :)

Other inference procedures can be suboptimal or in fact give inconsistent
answers.

• Allows for a consistent method to combine prior beliefs and data for
inference procedures.

• Usually have good frequentist properties. A 95% credibility interval will
often have coverage level close to 95%.

• Can give answers in large, high dimensional problems when frequentist
solutions will tend to break down.
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Example: Tropical Pacific Sea Surface Temperature Evolution

Probabilistic based model involving wind, sea surface temperature, and
the Southern Oscillation Index (air pressure measure) data to forecast sea
surface temperatures 7 months in the future.

A highly complex, hierarchical model was used. In addition to the three sets
of input variables into the model, there is a regime component, recognizing
that the region goes through periods of below normal, above normal, and
typical temperatures. As part of the analysis, we can ask what would
temperature field look like conditional on being in a given temperature
regime.
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Currently there has been 540 months (January 1970 to December 2004) of
data analyzed with temperatures forecast on a 30 × 84 (= 2520) pixel grid.

The forecast map is a summary of the probabilistic model (the posterior
mean), which is a weighted average over all possible sea surface temperature
maps. As we can determine the likelihood of any temperature field, summary
measures of the uncertainty in the forecasts can be determined.

The calculation of the posterior distributions was done by Markov Chain
Monte Carlo (MCMC) based on 1000 imputations with a burn in of 100
imputations (I think).
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April 2004 anomaly forecast (top) and observed anomaly (bottom)
based on Jan 1970 to September 2003 data.
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April 2004 regime specific anomaly forecasts based on Jan 1970 to
September 2003 data.
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November 2004 anomaly forecast with 25th and 75th percentiles based on
Jan 1970 to April 2004 data.
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Niño 3.4 Forecast = 1.375◦C

Niño 3.4 Observed = 0.851◦C

November 2004 anomaly forecast (top) and observed anomaly (bottom)
based on Jan 1970 to April 2004 data. This forecast suggests an El Niño
this winter.
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November 2004 regime specific anomaly forecasts based on Jan 1970 to
April 2004 data.
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Refs:

Berliner, Wikle, and Cressie (2000). Long-Lead Prediction of Pacific SSTs
via Bayesian Dynamic Modeling. Journal of Climate, 13, 3953-3968.

http://www.stat.ohio-state.edu/∼sses/collab enso.php

Note that the model used here is only an approximation of reality. This does
not include information about the underlying physics of the meteorology.
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